Andrew J Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878834/publications.pdf

Version: 2024-02-01

159 papers 5,976 citations

36 h-index 91884 69 g-index

160 all docs

160 docs citations

160 times ranked 7824 citing authors

#	Article	IF	CITATIONS
1	Muâ€opioid receptors in septum mediate the development of behavioural sensitization to a single morphine exposure in male rats. Addiction Biology, 2022, 27, e13066.	2.6	4
2	Letter to the editor: Comments on - Regulation of habenular G-protein gamma 8 on learning and memory via modulation of the central acetylcholine system. Molecular Psychiatry, 2022, , .	7.9	0
3	The role of <scp>DCC</scp> in the survival of discrete midbrain dopaminergic neuron subpopulations. Journal of Neurochemistry, 2022, 161, 217-218.	3.9	O
4	M ₁ muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacology Research and Perspectives, 2022, 10, e00907.	2.4	7
5	Editorial: Exciting developments in neurochemistry research and publishing. Journal of Neurochemistry, 2022, , .	3.9	O
6	Compulsiveâ€like eating of highâ€fat highâ€sugar food is associated with â€̃addictionâ€like' glutamatergic dysfunction in obesity prone rats. Addiction Biology, 2022, 27, .	2.6	2
7	Adolescent chronic intermittent toluene inhalation dynamically regulates the transcriptome and neuronal methylome within the rat medial prefrontal cortex. Addiction Biology, 2021, 26, e12937.	2.6	3
8	Genetics of methamphetamine use disorder: A systematic review and meta-analyses of gene association studies. Neuroscience and Biobehavioral Reviews, 2021, 120, 48-74.	6.1	16
9	Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking. Neuropsychopharmacology, 2021, 46, 325-333.	5.4	17
10	It's more than just interoception: The insular cortex involvement in alcohol use disorder. Journal of Neurochemistry, 2021, 157, 1644-1651.	3.9	21
11	New approved and emerging pharmacological approaches to alcohol use disorder: a review of clinical studies. Expert Opinion on Pharmacotherapy, 2021, 22, 1291-1303.	1.8	18
12	Reward motivation and cognitive flexibility in tau null-mutation mice. Neurobiology of Aging, 2021, 100, 106-117.	3.1	1
13	The 5â€HT _{2C} receptor as a therapeutic target for alcohol and methamphetamine use disorders: A pilot study in treatmentâ€seeking individuals. Pharmacology Research and Perspectives, 2021, 9, e00767.	2.4	12
14	Should we or shouldn't we?. Journal of Neurochemistry, 2021, 157, 1405-1407.	3.9	0
15	Nâ€acetylcysteine reduces addictionâ€like behaviour towards highâ€fat highâ€sugar food in dietâ€induced obese rats. European Journal of Neuroscience, 2021, 54, 4877-4887.	2.6	10
16	Muscarinic M ₄ and M ₅ receptors in the ventral subiculum differentially modulate alcohol seeking versus consumption in male alcoholâ€preferring rats. British Journal of Pharmacology, 2021, 178, 3730-3746.	5.4	9
17	Repeated, moderate footshock reduces the propensity to relapse to alcohol seeking in female, but not male, iP rats Behavioral Neuroscience, 2021, 135, 771-781.	1.2	0
18	Assessing methamphetamine-related cue reactivity in people with methamphetamine use disorder relative to controls. Addictive Behaviors, 2021, 123, 107075.	3.0	12

#	Article	IF	Citations
19	Pattern of neural activation following yohimbineâ€induced reinstatement of alcohol seeking in rats. European Journal of Neuroscience, 2020, 51, 706-720.	2.6	10
20	A sleeping giant: Suvorexant for the treatment of alcohol use disorder?. Brain Research, 2020, 1731, 145902.	2.2	40
21	An imperfect model is still useful. Addiction, 2020, 115, 14-16.	3.3	6
22	Suvorexant to treat alcohol use disorder and comorbid insomnia: Plan for a phase II trial. Brain Research, 2020, 1728, 146597.	2.2	18
23	Orexin-1 receptor signaling within the lateral hypothalamus, but not bed nucleus of the stria terminalis, mediates context-induced relapse to alcohol seeking. Journal of Psychopharmacology, 2020, 34, 1261-1270.	4.0	5
24	Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. Advances in Pharmacology, 2020, 88, 233-275.	2.0	10
25	New author guidelines and launch of <i>Short Reports</i> . Pharmacology Research and Perspectives, 2020, 8, e00591.	2.4	0
26	Acetylcholine Muscarinic M4 Receptors as a Therapeutic Target for Alcohol Use Disorder: Converging Evidence From Humans and Rodents. Biological Psychiatry, 2020, 88, 898-909.	1.3	24
27	Brucine Nâ€Oxide Reduces Ethanol Intake and Preference in Alcoholâ€Preferring Male Fawnâ€Hooded Rats. Alcoholism: Clinical and Experimental Research, 2020, 44, 1321-1328.	2.4	8
28	The subfornical organ in sodium appetite: Recent insights. Neuropharmacology, 2019, 154, 107-113.	4.1	6
29	<i>GAL</i> _{<i>3</i>} receptor knockout mice exhibit an alcoholâ€preferring phenotype. Addiction Biology, 2019, 24, 886-897.	2.6	5
30	Phenotyping neurons activated in the mouse brain during restoration of salt debt. Journal of Chemical Neuroanatomy, 2019, 101, 101665.	2.1	2
31	Environmental enrichment reduces the propensity to relapse following punishment-imposed abstinence of alcohol seeking. Physiology and Behavior, 2019, 210, 112638.	2.1	7
32	The influence of opioid dependence on salt consumption and related psychological parameters in mice and humans. Drug and Alcohol Dependence, 2019, 203, 19-26.	3.2	2
33	The effect of adolescent inhalant abuse on energy balance and growth. Pharmacology Research and Perspectives, 2019, 7, e00498.	2.4	16
34	Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. Journal of Comparative Neurology, 2019, 527, 2615-2633.	1.6	14
35	Kazuhiro Ikenaka (1952–2018). Journal of Neurochemistry, 2019, 149, 158-159.	3.9	0
36	The importance of sex differences in pharmacology research. British Journal of Pharmacology, 2019, 176, 4087-4089.	5.4	13

#	Article	IF	Citations
37	Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model. Scientific Reports, 2019, 9, 18651.	3.3	22
38	Anterior Insular Cortex is Critical for the Propensity to Relapse Following Punishment-Imposed Abstinence of Alcohol Seeking. Journal of Neuroscience, 2019, 39, 1077-1087.	3.6	61
39	The effect of acute or repeated stress on the corticotropin releasing factor system in the CRH-IRES-Cre mouse: A validation study. Neuropharmacology, 2019, 154, 96-106.	4.1	33
40	Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment. Neuropharmacology, 2019, 145, 25-36.	4.1	18
41	Altered body weight associated with substance abuse: a look beyond food intake. Addiction Research and Theory, 2019, 27, 76-84.	1.9	5
42	Distinct Accumbens Shell Output Pathways Promote versus Prevent Relapse to Alcohol Seeking. Neuron, 2018, 98, 512-520.e6.	8.1	59
43	Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology, 2018, 43, 1510-1517.	5.4	33
44	The intersection of stress and reward: BNST modulation of aversive and appetitive states. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 87, 108-125.	4.8	82
45	Reduced alcoholâ€seeking in male offspring of sires exposed to alcohol selfâ€administration followed by punishmentâ€imposed abstinence. Pharmacology Research and Perspectives, 2018, 6, e00384.	2.4	14
46	Investigational drugs for alcohol use disorders: a review of preclinical data. Expert Opinion on Investigational Drugs, 2018, 27, 459-474.	4.1	10
47	New steps for treating alcohol use disorder. Psychopharmacology, 2018, 235, 1759-1773.	3.1	37
48	Glucose Availability Predicts the Feeding Response to Ghrelin in Male Mice, an Effect Dependent on AMPK in AgRP Neurons. Endocrinology, 2018, 159, 3605-3614.	2.8	22
49	Adolescent Inhalant Abuse Results in Adrenal Dysfunction and a Hypermetabolic Phenotype with Persistent Growth Impairments. Neuroendocrinology, 2018, 107, 340-354.	2.5	6
50	The galanin receptor-3 antagonist, SNAP 37889, inhibits cue-induced reinstatement of alcohol-seeking and increases c-Fos expression in the nucleus accumbens shell of alcohol-preferring rats. Journal of Psychopharmacology, 2018, 32, 911-921.	4.0	6
51	Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opinion on Investigational Drugs, 2018, 27, 677-690.	4.1	15
52	Salt Appetite, and the Influence of Opioids. Neurochemical Research, 2018, 43, 12-18.	3.3	13
53	MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochemistry International, 2017, 105, 80-90.	3.8	38
54	The galanin-3 receptor antagonist, SNAP 37889, suppresses alcohol drinking and morphine self-administration in mice. Neuropharmacology, 2017, 118, 1-12.	4.1	17

#	Article	lF	Citations
55	mGlu5 Signaling: A Target for Addiction Therapeutics?. , 2017, , 1-14.		О
56	Central amygdala relaxinâ€3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats. British Journal of Pharmacology, 2017, 174, 3359-3369.	5 . 4	19
57	Reduced heart rate variability in pet dogs affected by anxiety-related behaviour problems. Physiology and Behavior, 2017, 168, 122-127.	2.1	37
58	Adolescent inhalant abuse leads to other drug use and impaired growth; implications for diagnosis. Australian and New Zealand Journal of Public Health, 2017, 41, 99-104.	1.8	18
59	Nucleus incertus corticotrophinâ€releasing factor 1 receptor signalling regulates alcohol seeking in rats. Addiction Biology, 2017, 22, 1641-1654.	2.6	27
60	Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats. Neurobiology of Learning and Memory, 2017, 143, 88-93.	1.9	20
61	Hurdles in Basic Science Translation. Frontiers in Pharmacology, 2017, 8, 478.	3.5	25
62	Metabotropic Glutamate 5 Modulators. , 2016, , 86-96.		0
63	Knockdown of corticotropin-releasing factor 1 receptors in the ventral tegmental area enhances conditioned fear. European Neuropsychopharmacology, 2016, 26, 1533-1540.	0.7	9
64	The metabotropic glutamate 5 receptor is necessary for extinction of cocaineâ€associated cues. British Journal of Pharmacology, 2016, 173, 1085-1094.	5.4	20
65	The Role of Orexins/Hypocretins in Alcohol Use and Abuse. Current Topics in Behavioral Neurosciences, 2016, 33, 221-246.	1.7	33
66	Physiological stress coping and anxiety in greyhounds displaying inter-dog aggression. Applied Animal Behaviour Science, 2016, 180, 93-99.	1.9	12
67	The Nicotinic α6-Subunit Selective Antagonist bPiDI Reduces Alcohol Self-Administration in Alcohol-Preferring Rats. Neurochemical Research, 2016, 41, 3206-3214.	3.3	15
68	Toluene inhalation in adolescent rats reduces flexible behaviour in adulthood and alters glutamatergic and GABAergic signalling. Journal of Neurochemistry, 2016, 139, 806-822.	3.9	25
69	Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology, 2016, 110, 82-91.	4.1	38
70	Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13893-13898.	7.1	22
71	Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. Current Pharmacology Reports, 2016, 2, 241-252.	3.0	5
72	Special Issue in Honour of Philip M Beart. Neurochemical Research, 2016, 41, 463-464.	3.3	0

#	Article	IF	Citations
73	Adenosine 2 <scp>A</scp> receptors modulate reward behaviours for methamphetamine. Addiction Biology, 2016, 21, 407-421.	2.6	19
74	Role of Dopamine 2 Receptor in Impaired Drug-Cue Extinction in Adolescent Rats. Cerebral Cortex, 2016, 26, 2895-2904.	2.9	36
75	Fear extinction in 17 day old rats is dependent on metabotropic glutamate receptor 5 signaling. Behavioural Brain Research, 2016, 298, 32-36.	2.2	19
76	ISDN2014_0438: Chronic intermittent toluene inhalation during adolescence in rats results in circuit level dysfunction in the absence of overt neuropathology. International Journal of Developmental Neuroscience, 2015, 47, 131-131.	1.6	0
77	Experimental design and analysis and their reporting: new guidance for publication in <scp>BJP</scp> . British Journal of Pharmacology, 2015, 172, 3461-3471.	5.4	981
78	Involvement of central relaxinâ€3 signalling in sodium (salt) appetite. Experimental Physiology, 2015, 100, 1064-1072.	2.0	11
79	Persistent variations in neuronal DNA methylation following cocaine self-administration and protracted abstinence in mice. Neuroepigenetics, 2015, 4, 1-11.	2.8	34
80	Extinction of a cocaine-taking context that protects against drug-primed reinstatement is dependent on the metabotropic glutamate 5 receptor. Addiction Biology, 2015, 20, 482-489.	2.6	28
81	Diet-induced obesity causes ghrelin resistance in reward processing tasks. Psychoneuroendocrinology, 2015, 62, 114-120.	2.7	49
82	Distribution of the orexin-1 receptor (OX1R) in the mouse forebrain and rostral brainstem: A characterisation of OX1R-eGFP mice. Journal of Chemical Neuroanatomy, 2015, 66-67, 1-9.	2.1	45
83	Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiology of Disease, 2015, 76, 137-158.	4.4	9
84	Relaxin-3 Receptor (RXFP3) Signalling Mediates Stress-Related Alcohol Preference in Mice. PLoS ONE, 2015, 10, e0122504.	2.5	26
85	Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus. Neurochemical Research, 2015, 40, 1303-1310.	3.3	14
86	Role of $\hat{l}\pm 4$ - and $\hat{l}\pm 6$ -containing nicotinic receptors in the acquisition and maintenance of nicotine self-administration. Addiction Biology, 2015, 20, 500-512.	2.6	12
87	Orexin/hypocretin role in reward: implications for opioid and other addictions. British Journal of Pharmacology, 2015, 172, 334-348.	5.4	149
88	Role of cues and contexts on drugâ€seeking behaviour. British Journal of Pharmacology, 2014, 171, 4636-4672.	5.4	98
89	An improved method to prepare an injectable microemulsion of the galanin-receptor 3 selective antagonist, SNAP 37889, using Kolliphor® HS 15. MethodsX, 2014, 1, 212-216.	1.6	16
90	The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear. International Journal of Neuropsychopharmacology, 2014, 17, 1521-1532.	2.1	27

#	Article	IF	Citations
91	Found in translation? Commentary on a <scp>BJP</scp> themed issue about animal models in neuropsychiatry research. British Journal of Pharmacology, 2014, 171, 4521-4523.	5.4	o
92	Resolving pathobiological mechanisms relating to Huntington disease: Gait, balance, and involuntary movements in mice with targeted ablation of striatal D1 dopamine receptor cells. Neurobiology of Disease, 2014, 62, 323-337.	4.4	14
93	Specific impairments in instrumental learning following chronic intermittent toluene inhalation in adolescent rats. Psychopharmacology, 2014, 231, 1531-1542.	3.1	14
94	Chronic intermittent toluene inhalation initiated during adolescence in rats does not alter voluntary consumption of ethanol in adulthood. Alcohol, 2014, 48, 561-569.	1.7	4
95	Drugs currently in Phase II clinical trials for cocaine addiction. Expert Opinion on Investigational Drugs, 2014, 23, 1105-1122.	4.1	34
96	Knockdown of CRF1 Receptors in the Ventral Tegmental Area Attenuates Cue- and Acute Food Deprivation Stress-Induced Cocaine Seeking in Mice. Journal of Neuroscience, 2014, 34, 11560-11570.	3.6	40
97	Acamprosate Produces Its Anti-Relapse Effects Via Calcium. Neuropsychopharmacology, 2014, 39, 783-791.	5.4	119
98	The mGlu5 receptor regulates extinction of cocaine-driven behaviours. Drug and Alcohol Dependence, 2014, 137, 83-89.	3.2	31
99	Galanin-3 Receptor Antagonism by SNAP 37889 Reduces Motivation to Self-administer Alcohol and Attenuates Cue-Induced Reinstatement of Alcohol-Seeking in iP Rats. Journal of Pharmacological Sciences, 2014, 125, 211-216.	2.5	13
100	Chaperone heat shock protein 70 in nucleus accumbens core: a novel biological target of behavioural sensitization to morphine in rats. International Journal of Neuropsychopharmacology, 2014, 17, 469-484.	2.1	19
101	Relaxin-3/RXFP3 system regulates alcohol-seeking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20789-20794.	7.1	77
102	Depressionâ€related behaviours displayed by female <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> mice during abstinence from chronic ethanol consumption are rescued by wheelâ€running. European Journal of Neuroscience, 2013, 37, 1803-1810.	2.6	62
103	Behavioural and Anatomical Characterization of Mutant Mice With Targeted Deletion of D1 Dopamine Receptor^ ^ndash;Expressing Cells: Response to Acute Morphine. Journal of Pharmacological Sciences, 2013, 121, 39-47.	2.5	6
104	The Metabotropic Glutamate 5 Receptor Modulates Extinction and Reinstatement of Methamphetamine-Seeking in Mice. PLoS ONE, 2013, 8, e68371.	2.5	47
105	Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption. Frontiers in Pharmacology, 2013, 4, 93.	3.5	31
106	mGlu5 and adenosine A2A receptor interactions regulate the conditioned effects of cocaine. International Journal of Neuropsychopharmacology, 2012, 15, 995-1001.	2.1	24
107	The mGlu5 receptor antagonist MTEP attenuates opiate self-administration and cue-induced opiate-seeking behaviour in mice. Drug and Alcohol Dependence, 2012, 123, 264-268.	3.2	23
108	Investigation of the neuroanatomical substrates of reward seeking following protracted abstinence in mice. Journal of Physiology, 2012, 590, 2427-2442.	2.9	29

#	Article	IF	CITATIONS
109	The Phosphodiesteraseâ€4 (<scp>PDE</scp> 4) Inhibitor Rolipram Decreases Ethanol Seeking and Consumption in Alcoholâ€Preferring Fawnâ€Hooded Rats. Alcoholism: Clinical and Experimental Research, 2012, 36, 2157-2167.	2.4	62
110	Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood. PLoS ONE, 2012, 7, e52812.	2.5	17
111	mGlu5 Receptor Functional Interactions and Addiction. Frontiers in Pharmacology, 2012, 3, 84.	3.5	16
112	The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Frontiers in Behavioral Neuroscience, 2012, 6, 78.	2.0	28
113	Neuroplasticity in addiction: cellular and transcriptional perspectives. Frontiers in Molecular Neuroscience, 2012, 5, 99.	2.9	31
114	The role of metabotropic glutamate receptors in addiction: Evidence from preclinical models. Pharmacology Biochemistry and Behavior, 2012, 100, 811-824.	2.9	34
115	CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants. Psychopharmacology, 2012, 219, 699-713.	3.1	21
116	Imaging – the interface with pharmacology: looking to the future. British Journal of Pharmacology, 2011, 163, 1563-1564.	5.4	1
117	The galanin-3 receptor antagonist, SNAP 37889, reduces operant responding for ethanol in alcohol-preferring rats. Regulatory Peptides, 2011, 166, 59-67.	1.9	21
118	The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Research, 2011, 1391, 54-59.	2.2	125
119	Phenotypic disruption to orofacial movement topography in conditional mutants with generalized CamKlla/Cre D1Tox versus striatalâ€specific DARPPâ€32/Cre D1Tox ablation of D1 dopamine receptorâ€expressing cells. Synapse, 2011, 65, 835-842.	1.2	7
120	The Necessity of $\hat{l}\pm 4^*$ Nicotinic Receptors in Nicotine-Driven Behaviors: Dissociation Between Reinforcing and Motor Effects of Nicotine. Neuropsychopharmacology, 2011, 36, 1505-1517.	5.4	36
121	Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12509-12514.	7.1	49
122	New horizons for therapeutics in drug and alcohol abuse. , 2010, 125, 138-168.		64
123	Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Research, 2010, 1314, 124-129.	2.2	44
124	Deletion of CREB1 from the Dorsal Telencephalon Reduces Motivational Properties of Cocaine. Cerebral Cortex, 2010, 20, 941-952.	2.9	24
125	Cocaine-mediated synaptic potentiation is absent in VTA neurons from mGlu5-deficient mice. International Journal of Neuropsychopharmacology, 2010, 13, 133.	2.1	37
126	Neurochemistry Underlying Relapse to Opiate Seeking Behaviour. Neurochemical Research, 2009, 34, 1876-1887.	3.3	14

#	Article	IF	Citations
127	Factors regulating stress-induced alcohol-seeking and pharmacotherapeutic treatments. Alcohol, 2009, 43, 545-546.	1.7	2
128	The promiscuous mGlu5 receptor – a range of partners for therapeutic possibilities?. Trends in Pharmacological Sciences, 2009, 30, 617-623.	8.7	45
129	Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. International Journal of Neuropsychopharmacology, 2008, 11, 229-41.	2.1	75
130	Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. International Journal of Neuropsychopharmacology, 2008, 11, 765-74.	2.1	63
131	Nicotine-Induced Dystonic Arousal Complex in a Mouse Line Harboring a Human Autosomal-Dominant Nocturnal Frontal Lobe Epilepsy Mutation. Journal of Neuroscience, 2007, 27, 10128-10142.	3.6	72
132	Quantification of Phosphorylated cAMP-Response Element-Binding Protein Expression throughout the Brain of Amphetamine-Sensitized Rats: Activation of Hypothalamic Orexin A-Containing Neurons. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 805-812.	2.5	25
133	The Nuclear Transcription Factor CREB: Involvement in Addiction, Deletion Models and Looking Forward. Current Neuropharmacology, 2007, 5, 202-212.	2.9	39
134	Therapeutics for alcoholism: what's the future?. Drug and Alcohol Review, 2007, 26, 3-8.	2.1	10
135	Assessing appetitive and consummatory phases of ethanol self-administration in C57BL/6J mice under operant conditions: regulation by mGlu5 receptor antagonism. Psychopharmacology, 2007, 190, 21-29.	3.1	57
136	The GABAB receptor allosteric modulator CGP7930, like baclofen, reduces operant self-administration of ethanol in alcohol-preferring rats. Neuropharmacology, 2006, 50, 632-639.	4.1	110
137	The CRF1receptor antagonist, antalarmin, reverses isolation-induced up-regulation of dopamine D2receptors in the amygdala and nucleus accumbens of fawn-hooded rats. European Journal of Neuroscience, 2006, 23, 3319-3327.	2.6	54
138	The orexin system regulates alcohol-seeking in rats. British Journal of Pharmacology, 2006, 148, 752-759.	5.4	350
139	Exposure to amphetamine in rats during periadolescence establishes behavioural and extrastriatal neural sensitization in adulthood. International Journal of Neuropsychopharmacology, 2006, 9, 377.	2.1	36
140	The acute anti-craving effect of acamprosate in alcohol-preferring rats is associated with modulation of the mesolimbic dopamine system. Addiction Biology, 2005, 10, 233-242.	2.6	69
141	The Metabotropic Glutamate 5 Receptor Antagonist 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine Reduces Ethanol Self-Administration in Multiple Strains of Alcohol-Preferring Rats and Regulates Olfactory Glutamatergic Systems. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 590-600.	2.5	114
142	Neuropeptides: implications for alcoholism. Journal of Neurochemistry, 2004, 89, 273-285.	3.9	39
143	Comparative analysis of hepatic ethanol metabolism in Fawn-Hooded and Wistar-Kyoto rats. Alcohol, 2003, 30, 75-79.	1.7	13
144	The effect of isolation rearing on volitional ethanol consumption and central CCK/dopamine systems in Fawn-Hooded rats. Behavioural Brain Research, 2003, 141, 113-122.	2.2	41

#	Article	IF	CITATIONS
145	[3H](2S,4R)-4-Methylglutamate: a novel ligand for the characterization of glutamate transporters. Journal of Neurochemistry, 2001, 77, 1218-1225.	3.9	34
146	Alterations in Central Preproenkephalin mRNA Expression After Chronic Free-Choice Ethanol Consumption by Fawn-Hooded Rats. Alcoholism: Clinical and Experimental Research, 2001, 25, 1126-1133.	2.4	59
147	Alterations in Central Preproenkephalin mRNA Expression After Chronic Free-Choice Ethanol Consumption by Fawn-Hooded Rats. Alcoholism: Clinical and Experimental Research, 2001, 25, 1126-1133.	2.4	2
148	Comparative study on the distribution patterns of P2X1-P2X6 receptor immunoreactivity in the brainstem of the rat and the common marmoset (Callithrix jacchus): Association with catecholamine cell groups. Journal of Comparative Neurology, 2000, 427, 485-507.	1.6	105
149	5-HT Transporter Sites and 5-HT1A and 5-HT3 Receptors in Fawn-Hooded Rats: A Quantitative Autoradiography Study. Alcoholism: Clinical and Experimental Research, 2000, 24, 1093-1102.	2.4	33
150	Characterisation of vasopressin V1A, angiotensin AT1 and AT2 receptor distribution and density in normotensive and hypertensive rat brain stem and kidney: effects of restraint stress11Published on the World Wide Web on 2 October 2000 Brain Research, 2000, 883, 148-156.	2.2	22
151	Restraint Stress. Hypertension, 2000, 35, 126-129.	2.7	113
152	Comparative study on the distribution patterns of P2X1–P2X6 receptor immunoreactivity in the brainstem of the rat and the common marmoset (Callithrix jacchus): Association with catecholamine cell groups. Journal of Comparative Neurology, 2000, 427, 485-507.	1.6	1
153	Ethanol Consumption by Fawn-Hooded Rats Following Abstinence Effect of Naltrexone and Changes in mu-Opioid Receptor Density. Alcoholism: Clinical and Experimental Research, 1999, 23, 1008-1014.	2.4	59
154	NITRIC OXIDE AS A MODULATOR OF MEDULLARY PATHWAYS Clinical and Experimental Pharmacology and Physiology, 1997, 24, 760-763.	1.9	28
155	Functional GABAA receptors on rat vagal afferent neurones. British Journal of Pharmacology, 1997, 120, 469-475.	5.4	46
156	Actions of nitric oxide and expression of the mRNA encoding nitric oxide synthase in rat vagal afferent neurons. European Journal of Pharmacology, 1996, 315, 127-133.	3.5	36
157	Markers of Adenosine Removal in Normotensive and Hypertensive Rat Nervous Tissue. Hypertension, 1996, 28, 1026-1033.	2.7	12
158	Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists, 1994: NEUROTRANSMITTER MECHANISMS OF RAT VAGAL AFFERENT NEURONS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 869-873.	1.9	39
159	Functional dopamine D ₂ receptors on rat vagal afferent neurones. British Journal of Pharmacology, 1995, 114, 1329-1334.	5.4	59