Maarja Grossberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8787804/publications.pdf

Version: 2024-02-01

103 2,468 25
papers citations h-index

223800 46 g-index

105 105 all docs citations

105 times ranked 2191 citing authors

#	Article	IF	CITATIONS
1	Cu ₂ Zn _{1–<i>x</i>} Cd <i>_x</i> Sn(Se _{1–<i>y</i>} S <i>_y</i>) ₄ solid solutions as absorber materials for solar cells. Physica Status Solid (A) Applications and Materials Science, 2008, 205, 167-170.	1.8	340
2	Photoluminescence and Raman study of Cu2ZnSn(SexSl \hat{a} 'x)4 monograins for photovoltaic applications. Thin Solid Films, 2011, 519, 7403-7406.	1.8	262
3	Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy. Thin Solid Films, 2009, 517, 2489-2492.	1.8	158
4	The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Applied Physics Letters, 2012, 101, .	3.3	128
5	Optical properties of high quality Cu2ZnSnSe4 thin films. Applied Physics Letters, 2011, 99, .	3.3	89
6	Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu sequential films. Journal of Physics and Chemistry of Solids, 2009, 70, 567-570.	4.0	60
7	Photoluminescence study of defect clusters in Cu2ZnSnS4 polycrystals. Current Applied Physics, 2014, 14, 447-450.	2.4	60
8	SEM analysis and selenization of Cu–In alloy films produced by co-sputtering of metals. Solar Energy Materials and Solar Cells, 2009, 93, 11-14.	6.2	53
9	Temperature-dependent photoreflectance of SnS crystals. Journal of Physics and Chemistry of Solids, 2013, 74, 1683-1685.	4.0	51
10	Compositionally tunable structure and optical properties of Cu 1.85 (Cd x Zn 1â^2x) 1.1 SnS 4.1 (0 â‰\$ â‰\$1) monograin powders. Thin Solid Films, 2015, 582, 180-183.	1.8	50
11	A novel deposition method to grow ZnO nanorods: Spray pyrolysis. Superlattices and Microstructures, 2007, 42, 444-450.	3.1	48
12	CuS-based thin films for architectural glazing applications produced by co-evaporation: Morphology, optical and electrical properties. Surface and Coatings Technology, 2009, 204, 593-600.	4.8	47
13	Deep defects in Cu2ZnSnS4 monograin solar cells. Energy Procedia, 2011, 10, 261-265.	1.8	44
14	The electrical and optical properties of kesterites. JPhys Energy, 2019, 1, 044002.	5.3	43
15	Defect studies in Cu2ZnSnSe4 and Cu2ZnSn(Se0.75S0.25)4 by admittance and photoluminescence spectroscopy. Materials Science in Semiconductor Processing, 2013, 16, 992-996.	4.0	42
16	Synthesis of Cu2ZnSnS4 monograin powders with different compositions. Energy Procedia, 2011, 10, 203-207.	1.8	40
17	Photoluminescence study of disordering in the cation sublattice of Cu2ZnSnS4. Current Applied Physics, 2014, 14, 1424-1427.	2.4	40
18	Photoluminescence studies of heavily doped CuInTe2 crystals. Physica B: Condensed Matter, 2003, 337, 369-374.	2.7	38

#	Article	IF	CITATIONS
19	Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition. Applied Physics Letters, 2017, 110 , .	3.3	35
20	Study of structural and optoelectronic properties of Cu2Zn(Sn1 \hat{a} 'xGex)Se4 (x = 0 to 1) alloy compounds. Thin Solid Films, 2015, 582, 176-179.	1.8	34
21	Growth and electrical properties of ZnO nanorod arrays prepared by chemical spray pyrolysis. Physica B: Condensed Matter, 2009, 404, 4422-4425.	2.7	32
22	Microphotoluminescence study of Cu2ZnSnS4 polycrystals. Journal of Photonics for Energy, 2013, 3, 030599.	1.3	32
23	The effect of Ag alloying of Cu ₂ (Zn,Cd)SnS ₄ on the monograin powder properties and solar cell performance. Journal of Materials Chemistry A, 2019, 7, 24281-24291.	10.3	31
24	p–n junction improvements of Cu2ZnSnS4/CdS monograin layer solar cells. Applied Surface Science, 2015, 357, 795-798.	6.1	26
25	Origin of photoluminescence from antimony selenide. Journal of Alloys and Compounds, 2020, 817, 152716.	5.5	26
26	Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers. Journal of Crystal Growth, 2013, 380, 236-240.	1.5	25
27	Influence of order-disorder in Cu2ZnSnS4 powders on the performance of monograin layer solar cells. Thin Solid Films, 2017, 633, 122-126.	1.8	22
28	Photoluminescence properties of polycrystalline AgGaTe2. Solar Energy Materials and Solar Cells, 2006, 90, 1973-1982.	6.2	21
29	Study of Cu2CdGeSe4 monograin powders synthesized by molten salt method for photovoltaic applications. Thin Solid Films, 2018, 666, 15-19.	1.8	21
30	Detailed Insight into the CZTS/CdS Interface Modification by Air Annealing in Monograin Layer Solar Cells. ACS Applied Energy Materials, 2021, 4, 12374-12382.	5.1	19
31	Preparation and quality assessment of CuS thin films encapsulated in glass. Thin Solid Films, 2012, 520, 4184-4189.	1.8	18
32	Modification of the optoelectronic properties of Cu2CdSnS4 through low-temperature annealing. Journal of Alloys and Compounds, 2017, 723, 820-825.	5.5	18
33	Photoluminescence and Raman spectroscopy of polycrystalline AgInTe2. Thin Solid Films, 2005, 480-481, 246-249.	1.8	17
34	Thermal stability of sputtered Mo/polyimide films and formation of MoSe2 and MoS2 layers for application in flexible Cu(In,Ga)(Se,S)2 based solar cells. Thin Solid Films, 2012, 520, 4163-4168.	1.8	17
35	Temperature dependent current transport properties in Cu2ZnSnS4 solar cells. Thin Solid Films, 2015, 582, 162-165.	1.8	15
36	Investigation of potential and compositional fluctuations in CuGa3Se5 crystals using photoluminescence spectroscopy. Thin Solid Films, 2007, 515, 6204-6207.	1.8	14

#	Article	IF	CITATIONS
37	Impact of Cu2ZnSn(SexS1â^'x)4 (x=0.3) compositional ratios on the monograin powder properties and solar cells. Thin Solid Films, 2013, 535, 35-38.	1.8	14
38	Optical spectroscopy studies of Cu 2 ZnSnSe 4 thin films. Thin Solid Films, 2015, 582, 154-157.	1.8	14
39	Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	14
40	Study of (AgxCu1â^'x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications. Solar Energy, 2020, 198, 586-595.	6.1	14
41	Influence of annealing conditions on the structural quality of CulnSe2 thin films. Thin Solid Films, 2008, 516, 7105-7109.	1.8	13
42	Research in solar cell technologies at Tallinn University of Technology. Thin Solid Films, 2008, 516, 7125-7134.	1.8	13
43	CZTS Monograin Powders and Thin Films. Advanced Materials Research, 2011, 222, 8-13.	0.3	13
44	Temperature dependent electroreflectance study of Cu2ZnSnSe4 solar cells. Materials Science in Semiconductor Processing, 2015, 39, 251-254.	4.0	13
45	Tailoring of Bound Exciton Photoluminescence Emission in WS ₂ Monolayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900355.	2.4	13
46	Cu2ZnSnSe4 Monograin Powders for Solar Cell Application. , 2006, , .		12
47	Influence of compositional deviations on the properties of Cu2ZnSnSe4 monograin powders. Energy Procedia, 2011, 10, 323-327.	1.8	12
48	Photoluminescence study of deep donor- deep acceptor pairs in Cu2ZnSnS4. Materials Science in Semiconductor Processing, 2018, 80, 52-55.	4.0	12
49	Photoluminescence and Raman spectra of the ordered vacancy compound CuGa5Se8. Physica B: Condensed Matter, 2008, 403, 184-189.	2.7	11
50	Post-growth annealing effect on the performance of Cu2ZnSnSe4 monograin layer solar cells. Thin Solid Films, 2013, 535, 18-21.	1.8	11
51	Reaction enthalpies of Cu2ZnSnSe4 synthesis in KI. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1555-1564.	3.6	11
52	Synthesis of Cu2ZnSnS4 Solar Cell Absorber Material by Sol-gel Method. Energy Procedia, 2016, 102, 102-109.	1.8	11
53	Low temperature time resolved photoluminescence in ordered and disordered Cu2ZnSnS4 single crystals. Physica B: Condensed Matter, 2017, 508, 47-50.	2.7	11
54	Effect of germanium incorporation on the properties of kesterite Cu2ZnSn(S,Se)4 monograins. Thin Solid Films, 2019, 669, 315-320.	1.8	11

#	Article	IF	CITATIONS
55	The effect of sodium doping to CulnSe2 monograin powder properties. Thin Solid Films, 2007, 515, 5887-5890.	1.8	10
56	Isothermal and Two-Temperature Zone Selenization of Mo Layers. Advances in Materials Science and Engineering, 2012, 2012, 1-11.	1.8	10
57	Cu(In,Ga)Se2 monograin powders with different Ga content for solar cells. Solar Energy, 2018, 176, 648-655.	6.1	10
58	Growth and Characterization of Cu2Zn1â^'xFexSnS4 Thin Films for Photovoltaic Applications. Materials, 2020, 13, 1471.	2.9	10
59	Routes to develop a [S]/([S]+[Se]) gradient in wide band-gap Cu2ZnGe(S,Se)4 thin-film solar cells. Journal of Alloys and Compounds, 2021, 868, 159253.	5.5	10
60	Reduced recombination through CZTS/CdS interface engineering in monograin layer solar cells. JPhys Energy, 2022, 4, 024007.	5.3	10
61	Chemical etching of Cu <inf>2</inf> ZnSn(S,Se) <inf>4</inf> monograin powder., 2010,,.		9
62	A photoluminescence study of CuInSe ₂ single crystals ion implanted with 5 keV hydrogen. Journal Physics D: Applied Physics, 2016, 49, 105108.	2.8	9
63	Compositional dependence of Raman scattering and photoluminescence emission in Cu–Ga–Se films grown by MOCVD. Physica B: Condensed Matter, 2009, 404, 1984-1988.	2.7	8
64	Synthesis and characterization of tetrahedrite Cu10Cd2Sb4S13 monograin material for photovoltaic application. Materials Science in Semiconductor Processing, 2020, 110, 104973.	4.0	8
65	Observation of band gap fluctuations and carrier localization in Cu ₂ CdGeSe ₄ . Journal Physics D: Applied Physics, 2019, 52, 285102.	2.8	7
66	Effect of absorber surface modification on the optoelectronic properties of Cu2CdGeSe4 solar cells Thin Solid Films, 2020, 697, 137822.	1.8	7
67	Analysis of the edge emission of highly conductive CuGaTe2. Thin Solid Films, 2007, 515, 6192-6195.	1.8	6
68	Optical and structural properties of orthorhombic and tetragonal polymorphs of Cu2CdGeSe4. Thin Solid Films, 2018, 666, 44-47.	1.8	6
69	Observation of photoluminescence edge emission in CuSbSe2 absorber material for photovoltaic applications. Applied Physics Letters, 2019, 115, 092101.	3.3	6
70	Study of the optical properties of Sb2(Se1-xSx)3 (x = $0\hat{a}\in$ "1) solid solutions. Materials Science in Semiconductor Processing, 2022, 144, 106571.	4.0	6
71	Deep defect related photoluminescence in heavily doped CuGaTe2crystals. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 949-955.	1.8	5
72	High Temperature Properties of CdTe Crystals, Doped by Sb. IEEE Transactions on Nuclear Science, 2007, 54, 763-768.	2.0	5

#	Article	IF	Citations
73	Cu2ZnSnSe4 formation and reaction enthalpies in molten NaI starting from binary chalcogenides. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1313-1321.	3.6	5
74	Nano-scale sulfurization of the Cu ₂ ZnSnSe ₄ crystal surface for photovoltaic applications. Journal of Materials Chemistry A, 2019, 7, 24884-24890.	10.3	5
75	The effect of S/Se ratio on the properties of Cu2CdGe(SxSe1â^'x)4 microcrystalline powders for photovoltaic applications. Solar Energy, 2020, 209, 646-652.	6.1	5
76	Characterization of tetrahedrite Cu10Cd2Sb4S13 monograin materials grown in molten Cdl2 and Lil. Thin Solid Films, 2021, 739, 138980.	1.8	5
77	Deep and edge photoluminescence emission of CulnTe2. Physica Status Solidi (B): Basic Research, 2003, 237, R3-R5.	1.5	4
78	SEM analysis and selenization of Cu-Zn-Sn sequential films produced by evaporation of metals. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	4
79	Spray pyrolysis deposition and characterization of highly câ€axis oriented hexagonal ZnS nanorod crystals. Crystal Research and Technology, 2015, 50, 85-92.	1.3	4
80	Study of CZTS Nano-powder Synthesis by Hot Injection Method by Variation of Cu and Zn Concentrations. Energy Procedia, 2016, 102, 136-143.	1.8	4
81	Study of point defects in wide-bandgap Cu2CdGeS4 microcrystals by temperature and laser power dependent photoluminescence spectroscopy. Journal Physics D: Applied Physics, 2020, 53, 275102.	2.8	4
82	Identification of Excitons and Biexcitons in Sb 2 Se 3 under High Photoluminescence Excitation Density. Advanced Optical Materials, 2021, 9, 2100107.	7.3	4
83	Broad-band photoluminescence of donor–acceptor pairs in tetrahedrite Cu ₁₀ Cd ₂ Sb ₄ S ₁₃ microcrystals. Journal Physics D: Applied Physics, 2021, 54, 105102.	2.8	4
84	Chemical etching of tetrahedrite Cu10Cd2Sb4S13 monograin powder materials for solar cell applications. Materials Science in Semiconductor Processing, 2022, 138, 106291.	4.0	4
85	Properties of Cu-Sb-Se thin films deposited by magnetron co-sputtering for solar cell applications. Thin Solid Films, 2021, 740, 139004.	1.8	4
86	Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis. Superlattices and Microstructures, 2018, 116, 54-63.	3.1	3
87	Kesterite monograins for solar cells and water splitting applications. Thin Solid Films, 2021, 739, 138981.	1.8	3
88	Pyrite as prospective absorber material for monograin layer solar cell. Thin Solid Films, 2022, 743, 139068.	1.8	3
89	Temperature dependent optical and electrical characterization of SnS/CdS solar cell. Thin Solid Films, 2022, 743, 139069.	1.8	3
90	<title>Device characteristics of CuInSe<formula><inf><roman>2</roman></inf></formula>-based solar cells</title> ., 2005, , .		2

#	Article	IF	CITATIONS
91	The influence of doping with donor type impurities on the properties of CulnSe2. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 609-611.	0.8	2
92	The effect of elevated temperatures on excitonic emission and degradation processes of WS ₂ monolayers. Physical Chemistry Chemical Physics, 2020, 22, 22609-22616.	2.8	2
93	Growth of CulnSe2 monograin powders with different compositions. Materials Research Society Symposia Proceedings, 2005, 865, 14281.	0.1	1
94	CdTe Films on Mo/Glass Substrates: Preparation and Properties. Materials Research Society Symposia Proceedings, 2008, 1123, 20.	0.1	1
95	Growth of Cu-Rich/Poor CuInS2 thin films by the sequential modulated flux deposition technique. Materials Research Society Symposia Proceedings, 2009, 1165 , 1 .	0.1	1
96	Detailed photoluminescence study of Cu2Ge(SSe)3 microcrystals. AIP Advances, 2021, 11, 085105.	1.3	1
97	<title>Tailoring the composition and properties of CuInSe<formula><inf></formula> materials for solar cell application</title> ., 2005, 5946, 224.		0
98	High Temperature Properties of CdTe Crystals, doped by Sb. , 2006, , .		0
99	Selenization of CO-sputtered Cu-In alloy films. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	O
100	Preparation and Properties of CdTe Films on Mo/Glass Substrates. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	0
101	ZnCdSeTe Semiconductor Compounds: Preparation and Properties. Materials Research Society Symposia Proceedings, 2011, 1341, 1.	0.1	0
102	Study of the structure and optoelectronic properties of Cu2Ge(SexS1-x)3 microcrystalline powders. Thin Solid Films, 2022, 742, 139053.	1.8	0
103	Photoelectrochemical properties and band positions of Cd-substituted tetrahedrite Cu10Cd2Sb4S13 monograin materials grown in molten Cdl2 and Lil. Thin Solid Films, 2022, 741, 139030.	1.8	O