List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8787672/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 2017, 8, 205-236.	5.1	363
2	Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chemistry, 2018, 20, 1571-1582.	4.6	243
3	Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 2017, 66, 144-153.	5.6	225
4	Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 2016, 61, 703-711.	5.6	223
5	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 2019, 96, 699-708.	5.6	190
6	Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. Journal of Colloid and Interface Science, 2016, 479, 71-79.	5.0	188
7	Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, 35, 571-588.	1.6	120
8	High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Chitin Nanofibrils: 3D Structuring and Solid Foam†. ACS Applied Materials & Interfaces, 2020, 12, 11240-11251.	4.0	118
9	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	11.1	117
10	Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals. Biomacromolecules, 2018, 19, 1674-1685.	2.6	103
11	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
12	Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 2017, 207, 35-45.	2.7	97
13	Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6497-6511.	3.2	97
14	Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Journal of Colloid and Interface Science, 2017, 490, 328-335.	5.0	92
15	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids, 2019, 96, 709-716.	5.6	89
16	Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science, 2016, 466, 206-212.	5.0	88
17	Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties. Biomacromolecules, 2018, 19, 1037-1046.	2.6	79
18	Recent Innovations in Emulsion Science and Technology for Food Applications. Journal of Agricultural and Food Chemistry, 2021, 69, 8944-8963.	2.4	73

#	Article	IF	CITATIONS
19	Low-value wood for sustainable high-performance structural materials. Nature Sustainability, 2022, 5, 628-635.	11.5	72
20	Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocolloids, 2020, 106, 105878.	5.6	70
21	High Axial Ratio Nanochitins for Ultrastrong and Shape-Recoverable Hydrogels and Cryogels <i>via</i> Ice Templating. ACS Nano, 2019, 13, 2927-2935.	7.3	68
22	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	2.6	68
23	Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocolloids, 2021, 113, 106451.	5.6	65
24	Manufacture of electrospun all-aqueous poly(vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer, 2016, 92, 25-35.	1.8	63
25	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	7.8	60
26	Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Food Research International, 2017, 96, 103-112.	2.9	58
27	Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 9532-9541.	2.4	55
28	Modulation of Physicochemical Characteristics of Pickering Emulsions: Utilization of Nanocellulose- and Nanochitin-Coated Lipid Droplet Blends. Journal of Agricultural and Food Chemistry, 2020, 68, 603-611.	2.4	52
29	Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization. RSC Advances, 2015, 5, 50756-50766.	1.7	51
30	Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. ACS Nano, 2020, 14, 11150-11159.	7.3	45
31	Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant. Biomacromolecules, 2017, 18, 4393-4404.	2.6	44
32	All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly. ACS Nano, 2020, 14, 13380-13390.	7.3	41
33	Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 2021, 12, 383-406.	5.1	41
34	Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Current Opinion in Colloid and Interface Science, 2021, 56, 101512.	3.4	38
35	Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocolloids, 2021, 113, 106494.	5.6	37
36	Pickering Emulsions <i>via</i> Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS Applied Materials & amp; Interfaces, 2021, 13, 12581-12593.	4.0	37

#	Article	IF	CITATIONS
37	How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions. Biomacromolecules, 2019, 20, 4361-4369.	2.6	36
38	Chirality from Cryo-Electron Tomograms of Nanocrystals Obtained by Lateral Disassembly and Surface Etching of Never-Dried Chitin. ACS Nano, 2020, 14, 6921-6930.	7.3	30
39	Diversity and characteristics of colonization of root-associated fungi of Vaccinium uliginosum. Scientific Reports, 2018, 8, 15283.	1.6	27
40	The gastrointestinal fate of inorganic and organic nanoparticles in vitamin D-fortified plant-based milks. Food Hydrocolloids, 2021, 112, 106310.	5.6	27
41	Nanochitins of Varying Aspect Ratio and Properties of Microfibers Produced by Interfacial Complexation with Seaweed Alginate. ACS Sustainable Chemistry and Engineering, 2020, 8, 1137-1145.	3.2	24
42	Aqueous poly(vinyl acetate)-based core/shell emulsion: synthesis, morphology, properties and application. RSC Advances, 2014, 4, 27363.	1.7	21
43	Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/nanocellulose. Composites Science and Technology, 2022, 224, 109490.	3.8	20
44	Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology. Journal of Colloid and Interface Science, 2021, 588, 232-241.	5.0	18
45	Nitrogen- and oxygen-containing micro–mesoporous carbon microspheres derived from m-aminophenol formaldehyde resin for supercapacitors with high rate performance. RSC Advances, 2016, 6, 89744-89756.	1.7	17
46	Depletion Effects and Stabilization of Pickering Emulsions Prepared from a Dual Nanocellulose System. ACS Sustainable Chemistry and Engineering, 2022, 10, 9066-9076.	3.2	17
47	Electrospun hierarchically channeled polyacrylonitrile nanofibrous membrane for wastewater recovery. Journal of Cleaner Production, 2022, 361, 132167.	4.6	16
48	Fabrication and evaluation of one-component core/shell structured latex adhesives containing poly(styrene) cores and poly(acrylate) shells. International Journal of Adhesion and Adhesives, 2016, 70, 152-159.	1.4	15
49	Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. Langmuir, 2020, 36, 979-985.	1.6	14
50	Extending Emulsion Functionality: Post-Homogenization Modification of Droplet Properties. Processes, 2016, 4, 17.	1.3	12
51	Water-dispersible isocyanate modified using plant-based castor oil: Synthesis and application as crosslinking agent. Industrial Crops and Products, 2021, 171, 113845.	2.5	12
52	An aqueous polyisocyanate adhesive with excellent bond durability for engineered wood composites enhanced by polyamidoamine-epichlorohydrin co-crosslinking and montmorillonite hybridization. International Journal of Adhesion and Adhesives, 2022, 112, 103022.	1.4	8
53	Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin <i>via</i> hydrogelation and mineralization. Green Chemistry, 2022, 24, 1308-1317.	4.6	8
54	Fabrication and morphological evolution of inverse core/shell structural latex particles of poly(vinyl acetate)/polystyrene by maleic anhydride grafting. Colloid and Polymer Science, 2016, 294, 1117-1128.	1.0	7

#	Article	IF	CITATIONS
55	Rational design and synthesis of transition layer-mediated structured latex particles with poly(vinyl) Tj ETQq1 1	D.784314	rgBT /Overloo
56	Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chemistry, 2022, 386, 132819.	4.2	7
57	Research on the Blocking Reaction Kinetics and Mechanism of Aqueous Polyurethane Micelles Blocked by 2,4,6-Trichlorophenol. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 847-855.	1.2	5
58	Engineered Latex Particles Using Core–Shell Emulsion Polymerization: From a Strawberry-like Surface Pattern to a Shape-Memory Film. ACS Applied Polymer Materials, 2022, 4, 1276-1285.	2.0	5
59	Effect of Shell Growth on the Morphology of Polyvinyl Acetate/Polystyrene Inverted Core-Shell Latex Fabricated by Acrylonitrile Grafting. Materials, 2018, 11, 2482.	1.3	4
60	Design and fabrication of PVAc-based inverted core/shell (ICS) structured adhesives for improved water-resistant wood bonding performance: II. Influence of copolymerizing-grafting sequential reaction. International Journal of Adhesion and Adhesives, 2020, 99, 102571.	1.4	4
61	Plantâ€Derived Hydrogels: Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170218.	11.1	2
62	Measuring the Interfacial Behavior of Sugar-Based Surfactants to Link Molecular Structure and Uses. , 2019, , 387-412.		1
63	Design and fabrication of PVAc-based inverted core/shell (ICS) structured adhesives for improved water-resistant wood bonding performance: I. Influence of chemical grafting. International Journal of Adhesion and Adhesives, 2020, 98, 102522.	1.4	1