
Ronan Hinchet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8787666/publications.pdf Version: 2024-02-01

RONAN HINCHET

#	Article	lF	CITATIONS
1	Wearable Soft Technologies for Haptic Sensing and Feedback. Advanced Functional Materials, 2021, 31, 2007428.	7.8	126
2	High Force Density Textile Electrostatic Clutch. Advanced Materials Technologies, 2020, 5, 1900895.	3.0	75
3	Multimode Hydraulically Amplified Electrostatic Actuators for Wearable Haptics. Advanced Materials, 2020, 32, e2002564.	11.1	135
4	Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 2019, 365, 491-494.	6.0	569
5	TacTiles: Dual-Mode Low-Power Electromagnetic Actuators for Rendering Continuous Contact and Spatial Haptic Patterns in VR. , 2019, , .		23
6	Triboelectricâ€TFT Flipâ€Flop for Bistable Latching of Dielectric Elastomer Actuators. Advanced Electronic Materials, 2019, 5, 1900205.	2.6	5
7	Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy, 2018, 47, 401-409.	8.2	91
8	Piezoelectric properties in two-dimensional materials: Simulations and experiments. Materials Today, 2018, 21, 611-630.	8.3	219
9	Bennet's doubler working as a power booster for triboelectric nanoâ€generators. Electronics Letters, 2018, 54, 378-379.	0.5	11
10	Sustainable direct current powering a triboelectric nanogenerator <i>via</i> a novel asymmetrical design. Energy and Environmental Science, 2018, 11, 2057-2063.	15.6	153
11	DextrES. , 2018, , .		101
12	A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator. Nano Energy, 2018, 51, 173-184.	8.2	82
13	Bennet's charge doubler boosting triboelectric kinetic energy harvesters. Journal of Physics: Conference Series, 2018, 1052, 012027.	0.3	4
14	Research Update: Nanogenerators for self-powered autonomous wireless sensors. APL Materials, 2017, 5, .	2.2	43
15	Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures. ACS Nano, 2017, 11, 10733-10741.	7.3	191
16	Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics. Nature Communications, 2017, 8, 15891.	5.8	38
17	Control of Skin Potential by Triboelectrification with Ferroelectric Polymers. Advanced Materials, 2015, 27, 5553-5558.	11.1	98
18	Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. ChemSusChem, 2015, 8, 2327-2344.	3.6	164

RONAN HINCHET

#	Article	IF	CITATIONS
19	Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems. ACS Nano, 2015, 9, 7742-7745.	7.3	132
20	Shape memory polymer-based self-healing triboelectric nanogenerator. Energy and Environmental Science, 2015, 8, 3605-3613.	15.6	210
21	Towards Self-Powered Systems: Using Nanostructures to Harvest Ambient Energy. Engineering Materials, 2014, , 223-240.	0.3	1
22	FEM modeling of vertically integrated nanogenerators in compression and flexion modes. , 2014, , .		3
23	Ultrathin Nanogenerators as Selfâ€Powered/Active Skin Sensors for Tracking Eye Ball Motion. Advanced Functional Materials, 2014, 24, 1163-1168.	7.8	163
24	Energy harvesting from nanostructures. , 2014, , .		2
25	Performance Optimization of Vertical Nanowireâ€based Piezoelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 971-977.	7.8	139
26	Nanoâ€Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect. Advanced Materials, 2013, 25, 883-888.	11.1	89
27	PIEZOELECTRIC NANOSTRUCTURES FOR MECHANICAL ENERGY HARVESTING. , 2013, , .		0
28	Evaluation of Vertical Integrated Nanogenerator Performances in Flexion. Journal of Physics: Conference Series, 2013, 476, 012006.	0.3	11
29	Scaling prospects in mechanical energy harvesting with piezo nanowires. EPJ Applied Physics, 2013, 63, 14407.	0.3	0
30	PiezoNEMS: Semiconductor nanowires and heterostructures for sensing and energy harvesting. , 2012, , .		1
31	Scaling prospects in mechanical energy harvesting using piezoelectric nanostructures. , 2012, , .		4
32	Scaling rules of piezoelectric nanowires in view of sensor and energy harvester integration. , 2012, , .		15
33	NEMS nanostructures with enhanced piezoresistive and piezoelectric properties. Application to sensor devices and energy harvesting. , 2011, , .		О