
Catherine K King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8787256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications, 2018, 9, 1001.	5.8	632
2	Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Record, 2001, 37, 199-214.	0.4	160
3	Uptake and Depuration Kinetics Influence Microplastic Bioaccumulation and Toxicity in Antarctic Krill (<i>Euphausia superba</i>). Environmental Science & Technology, 2018, 52, 3195-3201.	4.6	129
4	Effects of metal contaminants on the development of the common Antarctic sea urchin Sterechinus neumayeri and comparisons of sensitivity with tropical and temperate echinoids. Marine Ecology - Progress Series, 2001, 215, 143-154.	0.9	102
5	Reproductive potential of a marine ecosystem engineer at the edge of a newly expanded range. Global Change Biology, 2008, 14, 907-915.	4.2	98
6	An Antarctic Research Station as a Source of Brominated and Perfluorinated Persistent Organic Pollutants to the Local Environment. Environmental Science & Technology, 2015, 49, 103-112.	4.6	93
7	Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. Chemosphere, 2006, 63, 1466-1476.	4.2	79
8	Vulnerability of the calcifying larval stage of the Antarctic sea urchin <i>Sterechinus neumayeri</i> to nearâ€future ocean acidification and warming. Global Change Biology, 2013, 19, 2264-2275.	4.2	77
9	Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biology, 2012, 35, 1027-1034.	0.5	71
10	Exposure-Pathway Models Explain Causality in Whole-Sediment Toxicity Tests. Environmental Science & Technology, 2005, 39, 837-843.	4.6	69
11	An Assessment of Five Australian Polychaetes and Bivalves for Use in Whole-Sediment Toxicity Tests: Toxicity and Accumulation of Copper and Zinc from Water and Sediment. Archives of Environmental Contamination and Toxicology, 2004, 47, 314-23.	2.1	63
12	Short-term accumulation of Cd and Cu from water, sediment and algae by the amphipod Melita plumulosa and the bivalve Tellina deltoidalis. Marine Ecology - Progress Series, 2005, 287, 177-188.	0.9	59
13	Phytoremediation of hydrocarbon contaminants in subantarctic soils: An effective management option. Journal of Environmental Management, 2014, 142, 60-69.	3.8	50
14	The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica. Water Research, 2016, 105, 602-614.	5.3	48
15	LABORATORY CULTURE AND LIFE-CYCLE EXPERIMENTS WITH THE BENTHIC AMPHIPOD MELITA PLUMULOSA (ZEIDLER). Environmental Toxicology and Chemistry, 2005, 24, 2065.	2.2	47
16	Effects of ocean acidification on Antarctic marine organisms: A metaâ€analysis. Ecology and Evolution, 2020, 10, 4495-4514.	0.8	39
17	CHRONIC SUBLETHAL SEDIMENT TOXICITY TESTING USING THE ESTUARINE AMPHIPOD, MELITA PLUMULOSA (ZEIDLER): EVALUATION USING METAL-SPIKED AND FIELD-CONTAMINATED SEDIMENTS. Environmental Toxicology and Chemistry, 2006, 25, 1887.	2.2	37
18	Ecosystem effects and the management of petroleum-contaminated soils on subantarctic islands. Chemosphere, 2018, 194, 200-210.	4.2	36

CATHERINE K KING

#	Article	IF	CITATIONS
19	Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipodMelita plumulosa. Environmental Toxicology, 2006, 21, 489-504.	2.1	35
20	Chronic toxicity of five metals to the polar marine microalga Cryothecomonas armigera – Application of a new bioassay. Environmental Pollution, 2017, 228, 211-221.	3.7	34
21	Contaminated suspended sediments toxic to an Antarctic filter feeder: Aqueous―and particulateâ€phase effects. Environmental Toxicology and Chemistry, 2009, 28, 409-417.	2.2	33
22	Larval development and metamorphosis of the Australian diadematid sea urchin <i>Centrostephanus rodgersii</i> . Invertebrate Reproduction and Development, 2005, 47, 197-204.	0.3	32
23	Physical, chemical, biological and ecotoxicological properties of wastewater discharged from Davis Station, Antarctica. Cold Regions Science and Technology, 2015, 113, 52-62.	1.6	32
24	Sensitivity and response time of three common Antarctic marine copepods to metal exposure. Chemosphere, 2015, 120, 267-272.	4.2	31
25	Microfluidic qPCR Enables High Throughput Quantification of Microbial Functional Genes but Requires Strict Curation of Primers. Frontiers in Environmental Science, 2018, 6, .	1.5	31
26	Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity. Environmental Pollution, 2018, 242, 1319-1330.	3.7	29
27	Temporal changes in the sensitivity of coastal Antarctic zooplankton communities to diesel fuel: A comparison between single―and multiâ€species toxicity tests. Environmental Toxicology and Chemistry, 2014, 33, 882-890.	2.2	27
28	Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil. Marine Pollution Bulletin, 2016, 110, 343-353.	2.3	26
29	Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. Marine Environmental Research, 2013, 90, 136-141.	1.1	25
30	A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga <i>Phaeocystis antarctica</i> . Environmental Toxicology and Chemistry, 2015, 34, 1578-1587.	2.2	25
31	Dispersal and dilution of wastewater from an ocean outfall at Davis Station, Antarctica, and resulting environmental contamination. Chemosphere, 2016, 152, 142-157.	4.2	25
32	Toxicity of Metals to the Bivalve Tellina deltoidalis and Relationships Between Metal Bioaccumulation and Metal Partitioning Between Seawater and Marine Sediments. Archives of Environmental Contamination and Toxicology, 2010, 58, 657-665.	2.1	23
33	Fuel oil and dispersant toxicity to the Antarctic sea urchin (<i>Sterechinus neumayeri</i>). Environmental Toxicology and Chemistry, 2017, 36, 1563-1571.	2.2	23
34	The influence of vegetation and soil properties on springtail communities in a diesel-contaminated soil. Science of the Total Environment, 2018, 619-620, 1098-1104.	3.9	22
35	Toxicity of diesel contaminated soils to the subantarctic earthworm <i>Microscolex macquariensis</i> . Environmental Toxicology and Chemistry, 2013, 32, 370-377.	2.2	21
36	Sensitivity of six subantarctic marine invertebrates to common metal contaminants. Environmental Toxicology and Chemistry, 2016, 35, 2245-2251.	2.2	20

CATHERINE K KING

#	Article	IF	CITATIONS
37	Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants. Environmental Sciences: Processes and Impacts, 2015, 17, 1238-1248.	1.7	19
38	Comparative copper sensitivity between life stages of common subantarctic marine invertebrates. Environmental Toxicology and Chemistry, 2018, 37, 807-815.	2.2	19
39	Diffusive Gradients in Thin Films Can Predict the Toxicity of Metal Mixtures to Two Microalgae: Validation for Environmental Monitoring in Antarctic Marine Conditions. Environmental Toxicology and Chemistry, 2019, 38, 1323-1333.	2.2	19
40	Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. , 2020, 8, coaa049.		19
41	Direct evidence of histopathological impacts of wastewater discharge on resident Antarctic fish () Tj ETQq1 1 0	.784314 rg 2.3	gBT_/Overlock
42	Toxicity of fuel ontaminated soil to Antarctic moss and terrestrial algae. Environmental Toxicology and Chemistry, 2015, 34, 2004-2012.	2.2	18
43	Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature. Environmental Pollution, 2019, 249, 54-62.	3.7	17
44	Preliminary study of cellular metal accumulation in two Antarctic marine microalgae – implications for mixture interactivity and dietary risk. Environmental Pollution, 2019, 252, 1582-1592.	3.7	15
45	Assessing the Risk of Metals and Their Mixtures in the Antarctic Nearshore Marine Environment with Diffusive Gradients in Thin-Films. Environmental Science & Technology, 2020, 54, 306-315.	4.6	14
46	Behavioural sensitivity of a key Southern Ocean species (Antarctic krill, Euphausia superba) to p,p′-DDE exposure. Ecotoxicology and Environmental Safety, 2012, 75, 163-170.	2.9	13
47	Determining the sensitivity of the Antarctic amphipod Orchomenella pinguides to metals using a joint model of survival response to exposure concentration and duration. Ecotoxicology, 2015, 24, 583-594.	1.1	13
48	Application of a quantitative histological health index for Antarctic rock cod (Trematomus) Tj ETQq0 0 0 rgBT /0)verlock 1 1.1	0 Tf 50 302 Td
49	The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils. Integrated Environmental Assessment and Management, 2015, 11, 235-241.	1.6	12
50	Soil invertebrate community change over fuelâ€contaminated sites on a subantarctic island: An ecological fieldâ€based line of evidence for site risk assessment. Integrated Environmental Assessment and Management, 2016, 12, 306-314.	1.6	12
51	Physico-chemical changes in metal-spiked sediments deployed in the field: Implications for the interpretation of in situ studies. Chemosphere, 2011, 83, 400-408.	4.2	11
52	Lethal and behavioral impacts of diesel and fuel oil on the Antarctic amphipod <i>Paramoera walkeri</i> . Environmental Toxicology and Chemistry, 2017, 36, 2444-2455.	2.2	11
53	Sensitivity of a Large and Representative Sample of Antarctic Marine Invertebrates to Metals. Environmental Toxicology and Chemistry, 2019, 38, 1560-1568.	2.2	11
54	Tracking spatial distribution of human-derived wastewater from Davis Station, East Antarctica, using δ15N and δ13C stable isotopes. Marine Pollution Bulletin, 2015, 90, 41-47.	2.3	10

4

CATHERINE K KING

#	Article	IF	CITATIONS
55	Toxicity of copper to three common subantarctic marine gastropods. Ecotoxicology and Environmental Safety, 2017, 136, 70-77.	2.9	10
56	Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuelâ€contaminated soil. Ecology and Evolution, 2015, 5, 2633-2645.	0.8	9
57	Applying microbial indicators of hydrocarbon toxicity to contaminated sites undergoing bioremediation on subantarctic Macquarie Island. Environmental Pollution, 2020, 259, 113780.	3.7	9
58	Abundance and diversity of soil invertebrates in the Windmill Islands region, East Antarctica. Polar Biology, 2015, 38, 1391-1400.	0.5	8
59	Oil Pollution in Antarctica. , 2017, , 759-803.		8
60	Sensitivity to Copper and Development of Culturing and Toxicity Test Procedures for the Antarctic Terrestrial NematodePlectus murrayi. Environmental Toxicology and Chemistry, 2020, 39, 482-491.	2.2	8
61	Seawater temperature effect on metal accumulation and toxicity in the subantarctic Macquarie Island isopod, Exosphaeroma gigas. Aquatic Toxicology, 2016, 177, 333-342.	1.9	7
62	Assessing metal contaminants in Antarctic soils using diffusive gradients in thin-films. Chemosphere, 2021, 269, 128675.	4.2	7
63	Response of stream invertebrate communities to vegetation damage from overgrazing by exotic rabbits on subantarctic Macquarie Island. Marine and Freshwater Research, 2011, 62, 404.	0.7	6
64	Reproduction, growth and early life history of the Antarctic gammarid amphipod Paramoera walkeri. Polar Biology, 2015, 38, 1583-1596.	0.5	6
65	Complex genetic structure revealed in the circum-Antarctic broadcast spawning sea urchin Sterechinus neumayeri. Marine Ecology - Progress Series, 2018, 601, 153-166.	0.9	5
66	Modelling grouped survival times in toxicological studies using Generalized Additive Models. Environmental and Ecological Statistics, 2015, 22, 465-491.	1.9	4
67	Integrated Modeling of Survival Data from Multiple Stressor Ecotoxicology Experiments. Environmental Science & Technology, 2017, 51, 7271-7277.	4.6	4
68	Impacts of Petroleum Fuels on Fertilization and Development of the Antarctic Sea UrchinSterechinus neumayeri. Environmental Toxicology and Chemistry, 2020, 39, 2527-2539.	2.2	4
69	The microalga <i>Phaeocystis antarctica</i> is tolerant to salinity and metal mixture toxicity interactions. Environmental Sciences: Processes and Impacts, 2021, 23, 1362-1375.	1.7	4
70	Preliminary investigation of effects of copper on a terrestrial population of the antarctic rotifer Philodina sp Chemosphere, 2022, 300, 134413.	4.2	4
71	Response of the Native Springtail <i>Parisotoma insularis</i> to Diesel Fuel–Contaminated Soils Under Fieldâ€Realistic Exposure Conditions at Subantarctic Macquarie Island. Integrated Environmental Assessment and Management, 2019, 15, 565-574.	1.6	3
72	Metal lability and environmental risk in anthropogenically disturbed Antarctic melt streams. Environmental Pollution, 2021, 287, 117627.	3.7	3

#	Article	IF	CITATIONS
73	Using an expert judgment response matrix to assess the risk of groundwater discharges from remediated fuel spill sites to the marine environment at subâ€Antarctic Macquarie Island, Australia. Integrated Environmental Assessment and Management, 2021, 17, 785-801.	1.6	2
74	Population structure and long-term decline in three species of heart urchins Abatus spp. near-shore in the Vestfold Hills region, East Antarctica. Marine Ecology - Progress Series, 2016, 545, 227-238.	0.9	2