Masahiro Yasunaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8787248/publications.pdf

Version: 2024-02-01

50 papers 1,806 citations

257450 24 h-index 42 g-index

52 all docs 52 docs citations

times ranked

52

2268 citing authors

#	Article	IF	CITATIONS
1	The natural sulfoglycolipid derivative SQAP improves the therapeutic efficacy of tissue factor-targeted radioimmunotherapy in the stroma-rich pancreatic cancer model BxPC-3. Translational Oncology, 2022, 15, 101285.	3.7	1
2	Molecular design of near-infrared (NIR) fluorescent probes targeting exopeptidase and application for detection of dipeptidyl peptidase 4 (DPP-4) activity. RSC Chemical Biology, 2022, 3, 859-867.	4.1	5
3	Evaluation of Fluorescence Intensity and Antitumor Effect Using Real-Time Imaging in Photoimmunotherapy. Pharmaceuticals, 2022, 15, 223.	3.8	2
4	Protection from contamination by 211At, an enigmatic but promising alpha-particle-emitting radionuclide. EJNMMI Physics, 2022, 9, .	2.7	4
5	Mechanism of action of a T cell-dependent bispecific antibody as a breakthrough immunotherapy against refractory colorectal cancer with an oncogenic mutation. Cancer Immunology, Immunotherapy, 2021, 70, 177-188.	4.2	13
6	High expression of TMEM180, a novel tumour marker, is associated with poor survival in stage III colorectal cancer. BMC Cancer, 2021, 21, 302.	2.6	11
7	Radioimmunotherapy with an 211 Atâ€labeled anti–tissue factor antibody protected by sodium ascorbate. Cancer Science, 2021, 112, 1975-1986.	3.9	12
8	Stabilization of an $\langle sup \rangle 211 \langle sup \rangle At$ -Labeled Antibody with Sodium Ascorbate. ACS Omega, 2021, 6, 14887-14895.	3.5	3
9	TMEM180 contributes to SW480 human colorectal cancer cell proliferation through intra-cellular metabolic pathways. Translational Oncology, 2021, 14, 101186.	3.7	1
10	T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals, 2021, 14, 1172.	3.8	13
11	Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Seminars in Cancer Biology, 2020, 64, 1-12.	9.6	93
12	A Fluorescent Probe for Rapid, Highâ€Contrast Visualization of Folateâ€Receptorâ€Expressing Tumors Inâ€Vivo. Angewandte Chemie, 2020, 132, 6071-6076.	2.0	28
13	A Fluorescent Probe for Rapid, Highâ€Contrast Visualization of Folateâ€Receptorâ€Expressing Tumors Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 6015-6020.	13.8	41
14	Reinforcement of antitumor effect of micelles containing anticancer drugs by binding of an anti-tissue factor antibody without direct cytocidal effects. Journal of Controlled Release, 2020, 323, 138-150.	9.9	14
15	Antitumor effect of humanized anti‑tissue factor antibody‑drug conjugate in a model of peritoneal disseminated pancreatic cancer. Oncology Reports, 2020, 45, 329-336.	2.6	8
16	Antibody DDS therapeutics against cancer, inflammatory autoimmune and infectious disease. Drug Delivery System, 2020, 35, 356-366.	0.0	0
17	Selection of Tumor models. Drug Delivery System, 2020, 35, 443-447.	0.0	O
18	U3-1402, a Novel HER3-Targeting Antibody–Drug Conjugate, for the Treatment of Colorectal Cancer. Molecular Cancer Therapeutics, 2019, 18, 2043-2050.	4.1	51

#	Article	IF	CITATIONS
19	Evaluation of the antitumor mechanism of antibodyâ€drug conjugates against tissue factor in stromaâ€rich allograft models. Cancer Science, 2019, 110, 3296-3305.	3.9	11
20	Antiâ€'tissue factor antibodyâ€'mediated immunoâ€'SPECT imaging of tissue factor expression in mouse models of pancreatic cancer. Oncology Reports, 2019, 41, 2371-2378.	2.6	8
21	Characterization of Antibody Products Obtained through Enzymatic and Nonenzymatic Glycosylation Reactions with a Glycan Oxazoline and Preparation of a Homogeneous Antibody–Drug Conjugate via Fc <i>N</i> -Glycan. Bioconjugate Chemistry, 2019, 30, 1343-1355.	3.6	30
22	Significant antitumor effect of an antibody against TMEM180, a new colorectal cancerâ€specific molecule. Cancer Science, 2019, 110, 761-770.	3.9	20
23	Preclinical studies of immunomicelles incorporating anticancer drugs. Drug Delivery System, 2019, 34, 29-37.	0.0	O
24	CAST Therapy. , 2019, , 269-288.		0
25	Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody. World Journal of Gastroenterology, 2018, 24, 5491-5504.	3.3	26
26	Chemotherapy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin. Scientific Reports, 2018, 8, 14211.	3.3	31
27	Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. Journal of Controlled Release, 2018, 284, 49-56.	9.9	48
28	Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Medical Science, 2018, 5, 162-180.	0.4	2
29	Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model. Scientific Reports, 2017, 7, 12341.	3.3	20
30	Immunoregulation by IL-7R-targeting antibody-drug conjugates: overcoming steroid-resistance in cancer and autoimmune disease. Scientific Reports, 2017, 7, 10735.	3.3	28
31	Development of Antibody–Drug Conjugates Using DDS and Molecular Imaging. Bioengineering, 2017, 4, 78.	3.5	23
32	Imaging mass spectrometry for the precise design of antibody-drug conjugates. Scientific Reports, 2016, 6, 24954.	3.3	33
33	Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin Fab fragment. Scientific Reports, 2016, 6, 23613.	3.3	33
34	Utility of epirubicinâ€incorporating micelles tagged with antiâ€tissue factor antibody clone with no anticoagulant effect. Cancer Science, 2016, 107, 335-340.	3.9	18
35	Effect of combined treatment with micelle-incorporated cisplatin (NC-6004) and S-1 on human gastric cancer xenografts. Molecular and Clinical Oncology, 2016, 5, 817-822.	1.0	4
36	Antitumor effect of antitissue factor antibodyâ€MMAE conjugate in human pancreatic tumor xenografts. International Journal of Cancer, 2015, 137, 1457-1466.	5.1	62

3

#	Article	IF	CITATIONS
37	Enhanced antitumor effect of antiâ€tissue factor antibodyâ€conjugated epirubicinâ€incorporating micelles in xenograft models. Cancer Science, 2015, 106, 627-634.	3.9	35
38	Feasibility study of the Fab fragment of a monoclonal antibody against tissue factor as a diagnostic tool. International Journal of Oncology, 2015, 47, 2107-2114.	3.3	17
39	Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials, 2015, 39, 23-30.	11.4	125
40	Effect of combined treatment with the epirubicinâ€incorporating micelles (NCâ€6300) and 1,2â€diaminocyclohexane platinum (II)â€incorporating micelles (NCâ€4016) on a human gastric cancer model. International Journal of Cancer, 2014, 135, 214-223.	5.1	35
41	Role of SLC6A6 in promoting the survival and multidrug resistance of colorectal cancer. Scientific Reports, 2014, 4, 4852.	3.3	35
42	Discovery of an uncovered region in fibrin clots and its clinical significance. Scientific Reports, 2013, 3, 2604.	3.3	44
43	<scp>NC</scp> â€6300, an epirubicinâ€incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Science, 2013, 104, 920-925.	3.9	114
44	Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Science, 2013, 104, 231-237.	3.9	28
45	The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution. Scientific Reports, 2013, 3, 3050.	3.3	39
46	Cancer-Stroma Targeting Therapy by Cytotoxic Immunoconjugate Bound to the Collagen 4 Network in the Tumor Tissue. Bioconjugate Chemistry, 2011, 22, 1776-1783.	3.6	70
47	The inhibition of pancreatic cancer invasion-metastasis cascade in both cellular signal and blood coagulation cascade of tissue factor by its neutralisation antibody. European Journal of Cancer, 2011, 47, 2230-2239.	2.8	41
48	New concept of cytotoxic immunoconjugate therapy targeting cancerâ€induced fibrin clots. Cancer Science, 2011, 102, 1396-1402.	3.9	69
49	Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotechnology, 2005, 23, 1542-1550.	17.5	449
50	Making the in-vitro model closer to actual B lymphopoiesis in the bone marrow. Seminars in Immunology, 1995, 7, 185-196.	5.6	6