Michael J Clague

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8787214/publications.pdf

Version: 2024-02-01

31902 14702 19,970 130 53 127 citations h-index g-index papers 141 141 141 30959 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy. Life Science Alliance, 2022, 5, e202101287.	1.3	25
2	Protein degradation on the global scale. Molecular Cell, 2022, 82, 1414-1423.	4.5	29
3	Membrane compartmentalisation of the ubiquitin system. Seminars in Cell and Developmental Biology, 2022, 132, 171-184.	2.3	6
4	The deubiquitylase USP9X controls ribosomal stalling. Journal of Cell Biology, 2021, 220, .	2.3	20
5	The PINK1 repertoire: Not just a one trick pony. BioEssays, 2021, 43, e2100168.	1.2	9
6	USP28 deletion and small-molecule inhibition destabilizes c-MYC and elicits regression of squamous cell lung carcinoma. ELife, $2021,10,$.	2.8	25
7	Data mining for traffic information. Traffic, 2020, 21, 162-168.	1.3	5
8	USP30 sets a trigger threshold for PINK1–PARKIN amplification of mitochondrial ubiquitylation. Life Science Alliance, 2020, 3, e202000768.	1.3	72
9	New aspects of USP30 biology in the regulation of pexophagy. Autophagy, 2019, 15, 1634-1637.	4.3	10
10	Breaking the chains: deubiquitylating enzyme specificity begets function. Nature Reviews Molecular Cell Biology, 2019, 20, 338-352.	16.1	512
11	The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene, 2018, 37, 2326-2342.	2.6	29
12	Basal mitophagy is widespread in <i>Drosophila</i> but minimally affected by loss of Pink1 or parkin. Journal of Cell Biology, 2018, 217, 1613-1622.	2.3	253
13	A Chlamydia effector combining deubiquitination and acetylation activities induces Golgi fragmentation. Nature Microbiology, 2018, 3, 1377-1384.	5.9	55
14	Dual role of <scp>USP</scp> 30 in controlling basal pexophagy and mitophagy. EMBO Reports, 2018, 19,	2.0	135
15	HRS–WASH axis governs actin-mediated endosomal recycling and cell invasion. Journal of Cell Biology, 2018, 217, 2549-2564.	2.3	46
16	Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS Journal, 2017, 284, 1753-1766.	2.2	36
17	Quantitative proteomic analysis of Parkin substrates in Drosophila neurons. Molecular Neurodegeneration, 2017, 12, 29.	4.4	77
18	Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature, 2017, 550, 481-486.	13.7	332

#	Article	IF	CITATIONS
19	Multi-story Parkin. Oncotarget, 2017, 8, 50327-50328.	0.8	2
20	The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. Journal of Cancer, 2016, 7, 2388-2407.	1.2	11
21	Parkinson's Disease: A Traffic Jam?. Current Biology, 2016, 26, R332-R334.	1.8	15
22	The centrosomal Deubiquitylase USP21 regulates Gli1 transcriptional activity and stability Journal of Cell Science, 2016, 129, 4001-4013.	1.2	30
23	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
24	Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. Journal of Proteome Research, 2015, 14, 5263-5272.	1.8	12
25	Differential Reprogramming of Isogenic Colorectal Cancer Cells by Distinct Activating KRAS Mutations. Journal of Proteome Research, 2015, 14, 1535-1546.	1.8	65
26	The demographics of the ubiquitin system. Trends in Cell Biology, 2015, 25, 417-426.	3.6	255
27	<scp>USP</scp> 30 deubiquitylates mitochondrial <scp>P</scp> arkin substrates and restricts apoptotic cell death. EMBO Reports, 2015, 16, 618-627.	2.0	136
28	Absolute Quantification of Endogenous Ras Isoform Abundance. PLoS ONE, 2015, 10, e0142674.	1.1	34
29	Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget, 2015, 6, 13757-13771.	0.8	48
30	Dysregulation of the Met pathway in non-small cell lung cancer: implications for drug targeting and resistance. Translational Lung Cancer Research, 2015, 4, 242-52.	1.3	22
31	<scp>USP8</scp> Controls the Trafficking and Sorting ofÂLysosomal Enzymes. Traffic, 2014, 15, 879-888.	1.3	25
32	Ubiquitin code assembly and disassembly. Current Biology, 2014, 24, R215-R220.	1.8	68
33	The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene, 2014, 33, 4265-4272.	2.6	60
34	PIM2 Kinase Is Induced by Cisplatin in Ovarian Cancer Cells and Limits Drug Efficacy. Journal of Proteome Research, 2014, 13, 4970-4982.	1.8	22
35	Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nature Cell Biology, 2014, 16, 1016-1026.	4.6	134
36	Plasticity of Mammary Cell Boundaries Governed by EGF and Actin Remodeling. Cell Reports, 2014, 8, 1722-1730.	2.9	11

#	Article	IF	Citations
37	Abstract B30: Differential network reprogramming by distinct activating K-Ras mutations. , 2014, , .		O
38	Oxidation controls the DUB step. Nature, 2013, 497, 49-50.	13.7	14
39	Deubiquitylases From Genes to Organism. Physiological Reviews, 2013, 93, 1289-1315.	13.1	350
40	The deubiquitylase USP15 stabilizes newly synthesized REST and rescues its expression at mitotic exit. Cell Cycle, 2013, 12, 1964-1977.	1.3	44
41	Regulation of Endocytic Trafficking and Signalling by Deubiquitylating Enzymes., 2013,, 245-259.		0
42	Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Molecular Biology of the Cell, 2012, 23, 1095-1103.	0.9	106
43	Cellular functions of the DUBs. Journal of Cell Science, 2012, 125, 277-286.	1.2	188
44	Direct and Indirect Control of Mitogen-activated Protein Kinase Pathway-associated Components, BRAP/IMP E3 Ubiquitin Ligase and CRAF/RAF1 Kinase, by the Deubiquitylating Enzyme USP15. Journal of Biological Chemistry, 2012, 287, 43007-43018.	1.6	44
45	Governance of Endocytic Trafficking and Signaling by Reversible Ubiquitylation. Developmental Cell, 2012, 23, 457-467.	3.1	159
46	Selective protein degradation in cell signalling. Seminars in Cell and Developmental Biology, 2012, 23, 509-514.	2.3	15
47	Global Snapshot of the Influence of Endocytosis upon EGF Receptor Signaling Output. Journal of Proteome Research, 2012, 11, 5157-5166.	1.8	16
48	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
49	Met Receptor: A Moving Target. Science Signaling, 2011, 4, pe40.	1.6	29
50	Isoform‧pecific Localization of the Deubiquitinase USP33 to the Golgi Apparatus. Traffic, 2011, 12, 1563-1574.	1.3	24
51	Structural variability of the ubiquitin specific protease DUSP-UBL double domains. FEBS Letters, 2011, 585, 3385-3390.	1.3	23
52	Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells. Biochemical Journal, 2010, 426, 65-72.	1.7	39
53	Emerging roles of deubiquitinases in cancerâ€associated pathways. IUBMB Life, 2010, 62, 140-157.	1.5	141
54	Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 2010, 6, 506-522.	4.3	566

#	Article	IF	Citations
55	Quantitative Analysis of HGF and EGF-Dependent Phosphotyrosine Signaling Networks. Journal of Proteome Research, 2010, 9, 2734-2742.	1.8	48
56	Ubiquitin: Same Molecule, Different Degradation Pathways. Cell, 2010, 143, 682-685.	13.5	449
57	Phosphoinositides and the endocytic pathway. Experimental Cell Research, 2009, 315, 1627-1631.	1.2	41
58	Deubiquitinase Activities Required for Hepatocyte Growth Factor-Induced Scattering of Epithelial Cells. Current Biology, 2009, 19, 1463-1466.	1.8	50
59	Ab initio protein modelling reveals novel human MIT domains. FEBS Letters, 2009, 583, 872-878.	1.3	17
60	Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 2009, 10, 550-563.	16.1	1,722
61	PIKfyve Regulation of Endosome‣inked Pathways. Traffic, 2009, 10, 883-893.	1.3	186
62	Turnover of the Human Proteome: Determination of Protein Intracellular Stability by Dynamic SILAC. Journal of Proteome Research, 2009, 8, 104-112.	1.8	294
63	Regulation of ErbB2 Receptor Status by the Proteasomal DUB POH1. PLoS ONE, 2009, 4, e5544.	1.1	42
64	The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation. VOLUME 282 (2007) PAGES 30929-30937. Journal of Biological Chemistry, 2009, 284, 8207.	1.6	0
65	Ras isoform abundance and signalling in human cancer cell lines. Oncogene, 2008, 27, 2754-2762.	2.6	92
66	Multivesicular bodies. Current Biology, 2008, 18, R402-R404.	1.8	17
67	Deciphering histone 2A deubiquitination. Genome Biology, 2008, 9, 202.	13.9	14
68	The MIT Domain of UBPY Constitutes a CHMP Binding and Endosomal Localization Signal Required for Efficient Epidermal Growth Factor Receptor Degradation. Journal of Biological Chemistry, 2007, 282, 30929-30937.	1.6	136
69	Differential redox regulation within the PTP superfamily. Cellular Signalling, 2007, 19, 1521-1530.	1.7	89
70	Control of growth factor receptor dynamics by reversible ubiquitination. Biochemical Society Transactions, 2006, 34, 754-756.	1.6	25
71	Activation of the Endosome-Associated Ubiquitin Isopeptidase AMSH by STAM, a Component of the Multivesicular Body-Sorting Machinery. Current Biology, 2006, 16, 160-165.	1.8	190
72	Membrane Traffic: Catching the Lysosome Express. Current Biology, 2006, 16, R416-R418.	1.8	9

#	Article	IF	CITATIONS
73	Endocytosis: the DUB version. Trends in Cell Biology, 2006, 16, 551-559.	3.6	235
74	The Ubiquitin Isopeptidase UBPY Regulates Endosomal Ubiquitin Dynamics and Is Essential for Receptor Down-regulation. Journal of Biological Chemistry, 2006, 281, 12618-12624.	1.6	216
75	Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosomerelated functions. Journal of Cell Science, 2006, 119, 2953-2959.	1.2	85
76	Growth factors induce differential phosphorylation profiles of the Hrs–STAM complex: a common node in signalling networks with signal-specific properties. Biochemical Journal, 2005, 389, 629-636.	1.7	51
77	The Myotubularin Family of Lipid Phosphatases. Traffic, 2005, 6, 1063-1069.	1.3	90
78	Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3. Journal of Cell Science, 2005, 118, 2005-2012.	1.2	67
79	AMSH is an endosome-associated ubiquitin isopeptidase. Journal of Cell Biology, 2004, 166, 487-492.	2.3	337
80	I-proteins – a proposed switch in myotubularin function. Trends in Biochemical Sciences, 2004, 29, 58-61.	3.7	10
81	The Met Receptor Degradation Pathway. Journal of Biological Chemistry, 2004, 279, 52835-52839.	1.6	58
82	Phosphatidylinositol-5-Phosphate Activation and Conserved Substrate Specificity of the Myotubularin Phosphatidylinositol 3-Phosphatases. Current Biology, 2003, 13, 504-509.	1.8	218
83	Hrs function: viruses provide the clue. Trends in Cell Biology, 2003, 13, 603-606.	3.6	52
84	Calcium and calmodulin in membrane fusion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 137-143.	1.9	99
85	Membrane Fusion. ChemInform, 2003, 34, no.	0.1	0
86	Membrane Fusion. Chemical Reviews, 2003, 103, 53-70.	23.0	254
87	Endosomal Dynamics of Met Determine Signaling Output. Molecular Biology of the Cell, 2003, 14, 1346-1354.	0.9	104
88	The UIM domain of Hrs couples receptor sorting to vesicle formation. Journal of Cell Science, 2003, 116, 4169-4179.	1.2	164
89	Membrane Transport: A Coat for Ubiquitin. Current Biology, 2002, 12, R529-R531.	1.8	35
90	Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene, 2001, 20, 2761-2770.	2.6	159

#	Article	IF	Citations
91	Characterization of MTMR3. Current Biology, 2001, 11, 1600-1605.	1.8	141
92	The interface of receptor trafficking and signalling. Journal of Cell Science, 2001, 114, 3075-3081.	1.2	125
93	The interface of receptor trafficking and signalling. Journal of Cell Science, 2001, 114, 3075-81.	1.2	98
94	Membrane transport: Deciphering fusion. Current Biology, 2000, 10, R750-R752.	1.8	3
95	Endosomal Localization and Receptor Dynamics Determine Tyrosine Phosphorylation of Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate. Molecular and Cellular Biology, 2000, 20, 7685-7692.	1.1	114
96	Detection of thiol modification following generation of reactive nitrogen species: analysis of synaptic vesicle proteins. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 281-286.	1.1	16
97	Membrane transport: Take your fusion partners. Current Biology, 1999, 9, R258-R260.	1.8	30
98	Regulation of endosome fusion. Molecular Membrane Biology, 1999, 16, 73-79.	2.0	52
99	Localization of a Class II Phosphatidylinositol 3-Kinase, PI3KC2α, to Clathrin-Coated Vesicles. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 162-166.	1.7	23
100	Regulation of early-endosome dynamics by phosphatidylinositol 3-phosphate binding proteins. Biochemical Society Transactions, 1999, 27, 662-666.	1.6	6
101	Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Current Biology, 1998, 8, 881-884.	1.8	213
102	Inhibition of Endosome Fusion by Wortmannin Persists in the Presence of Activated rab5. Molecular Biology of the Cell, 1998, 9, 323-332.	0.9	48
103	Molecular aspects of the endocytic pathway. Biochemical Journal, 1998, 336, 271-282.	1.7	175
104	Inhibition of Calcium-independent Mannose 6-Phosphate Receptor Incorporation into trans-Golgi Network-derived Clathrin-coated Vesicles by Wortmannin. Journal of Biological Chemistry, 1997, 272, 24170-24175.	1.6	31
105	Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin. Biophysical Journal, 1997, 73, 2280-2291.	0.2	51
106	Regulation of Early Endosome Fusion by Phospholipase D Activity. Biochemical and Biophysical Research Communications, 1997, 236, 285-288.	1.0	14
107	Glutamate uptake occurs at an early stage of synaptic vesicle recycling. Current Biology, 1997, 7, 353-356.	1.8	15
108	Inhibition of mitogen-induced DNA synthesis by bafilomycin A1 in Swiss 3T3 fibroblasts. Biochemical Journal, 1996, 313, 65-70.	1.7	28

#	Article	IF	CITATIONS
109	Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Letters, 1995, 367, 272-274.	1.3	74
110	Annexins in the endocytic pathway. Trends in Biochemical Sciences, 1994, 19, 231-232.	3.7	45
111	Phosphorylation of GDI and membrane cycling of rab proteins. FEBS Letters, 1993, 329, 313-318.	1.3	53
112	Enhancement of viral fusion by nonadsorbing polymers. Biophysical Journal, 1993, 65, 528-534.	0.2	21
113	Role of Target Membrane Structure in Fusion with Influenza Virus: Effect of Modulating Erythrocyte Transbilayer Phospholipid Distribution. Membrane Biochemistry, 1993, 10, 3-15.	0.6	16
114	[21] Kinetics of fusion of enveloped viruses with cells. Methods in Enzymology, 1993, 220, 277-287.	0.4	8
115	Regulation of Early Endosome Fusion In Vitro. , 1993, , 215-228.		0
116	Regulation of intracellular membrane transport. Current Opinion in Cell Biology, 1992, 4, 593-599.	2.6	69
117	A long-lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH. FEBS Letters, 1992, 311, 221-225.	1.3	50
118	Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: a fluorescence study. Biochemistry, 1991, 30, 5491-5497.	1.2	50
119	A Dissection of Steps Leading to Viral Envelope Protein-Mediated Membrane Fusion. Annals of the New York Academy of Sciences, 1991, 635, 285-296.	1.8	49
120	Delay time for influenza virus hemagglutinin-induced membrane fusion depends on hemagglutinin surface density. Journal of Virology, 1991, 65, 2402-2407.	1.5	100
121	Effect of erythrocyte transbilayer phospholipid distribution on fusion with vesicular stomatitis virus. Biochemistry, 1990, 29, 4054-4058.	1.2	56
122	Transient dichroism studies of spectrin rotational diffusion in solution and bound to erythrocyte membranes. Biochemistry, 1990, 29, 3898-3904.	1.2	22
123	Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry, 1990, 29, 1303-1308.	1.2	109
124	Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1030, 1-10.	1.4	58
125	Cytoskeletal restraints of band 3 rotational mobility in human erythrocyte membranes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 981, 43-50.	1.4	22
126	A comparative study of band 3 aggregation in erythrocyte membranes by melittin and other cationic agents. Biochimica Et Biophysica Acta - Biomembranes, 1989, 980, 93-99.	1.4	55

#	Article	IF	CITATIONS
127	Electron Transfer and Conformation States in Bovine Cytochrome c Oxidase. Annals of the New York Academy of Sciences, 1988, 550, 167-176.	1.8	2
128	Responsibility of scientists. Nature, 1988, 336, 418-418.	13.7	0
129	Transient dichroism measurements on eosin-labelled ankyrin rebound to stripped erythocyte membrane. Biochemical Society Transactions, 1987, 15, 864-865.	1.6	1
130	Immobilization of band 3 protein and inhibition of melittin action by divalent cations. Biochemical Society Transactions, 1986, 14, 883-884.	1.6	4