
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Sensitized Photoluminescence from Erbium Chloride Silicate via Interparticle Energy Transfer. Materials, 2022, 15, 1093.	2.9	3
2	Near-infrared luminescence of erbium doped Ga2O3 films and devices based on silicon: Realization of energy transfer. Optical Materials, 2022, 129, 112462.	3.6	6
3	Electroluminescence from metal–oxide–semiconductor devices based on erbium silicate nanocrystals and silicon nanocrystals co-embedded in silicon oxide thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 20659-20667.	2.2	7
4	A Review on Metastable Silicon Allotropes. Materials, 2021, 14, 3964.	2.9	17
5	Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Nanoscale Advances, 2021, 3, 4810-4815.	4.6	5
6	Influence of Electron–Phonon Interaction on the Lattice Thermal Conductivity in Singleâ€Crystal Si. Annalen Der Physik, 2020, 532, 1900435.	2.4	6
7	Facile synthesis of ternary PtPdCu alloy hexapods as highly efficient electrocatalysts for methanol oxidation. RSC Advances, 2020, 10, 12689-12694.	3.6	13
8	Confinement effect and low-defect density-induced long lifetime Er silicate nanowire embedded in silicon oxide film. Optics Express, 2020, 28, 13216.	3.4	4
9	Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 2019, 63, 103859.	16.0	107
10	Correlation of efficient luminescence with crystal structures of y-Er2Si2O7 and α-Er2Si2O7 in Er-doped silicon oxide films. Journal of Materials Science, 2019, 54, 12668-12675.	3.7	5
11	Plasmon-Coupled Förster Resonance Energy Transfer between Silicon Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 23604-23609.	3.1	11
12	Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. Science China Materials, 2019, 62, 1470-1478.	6.3	31
13	Unidirectional light scattering by up–down Janus dimers composed of gold nanospheres and silicon nanorods. Optics Communications, 2019, 435, 362-366.	2.1	5
14	Control of the formation and luminescent properties of polymorphic erbium silicates on silicon. Optical Materials Express, 2019, 9, 1716.	3.0	17
15	Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with amorphous silicon clusters, part I: fabrication. Optical Materials Express, 2019, 9, 4329.	3.0	5
16	Efficient sensitized photoluminescence of Er silicate in silicon oxide films embedded with amorphous silicon clusters, part II: photoluminescence. Optical Materials Express, 2019, 9, 4339.	3.0	0
17	Defect-Related Electroluminescence in the 1.2–1.7Âμm Range from Boron-Implanted Silicon at Room Temperature. Journal of Electronic Materials, 2018, 47, 4970-4974.	2.2	0
18	The devisable reflection-enhanced lumpy silver particle and its application in thin film amorphous silicon solar cell. Journal of Materials Science: Materials in Electronics, 2018, 29, 3153-3159.	2.2	3

#	Article	IF	CITATIONS
19	Fabrication of stabilized and dispersive copper nanowires ink. Journal of Materials Science: Materials in Electronics, 2018, 29, 14989-14994.	2.2	3
20	One-Pot Fast Synthesis of Leaf-Like CuO Nanostructures and CuO/Ag Microspheres with Photocatalytic Application. Nano, 2017, 12, 1750035.	1.0	11
21	Silicon-Quantum-Dot Light-Emitting Diodes With Interlayer-Enhanced Hole Transport. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	24
22	Size-dependent magnetic properties of branchlike nickel oxide nanocrystals. AIP Advances, 2017, 7, .	1.3	42
23	Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework. Journal of Applied Physics, 2017, 122, .	2.5	7
24	Thermionic energy conversion for concentrating solar power. Applied Energy, 2017, 208, 1318-1342.	10.1	72
25	Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano, 2017, 11, 9854-9862.	14.6	285
26	Silicon-based optoelectronic luminescent materials and devices. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2017, 47, 1001-1016.	0.5	1
27	Synthesis of colloidal NiO nanocrystals by a hotâ€injection approach with a protecting ligand. Crystal Research and Technology, 2016, 51, 313-317.	1.3	6
28	Green electroluminescence from Tb4O7 films on silicon: Impact excitation of Tb3+ ions by hot carriers. Applied Physics Letters, 2016, 108, .	3.3	11
29	Modifying the Fluorescence of CdTe Quantum Dots by Silica-Coated Gold Nanorods. Nanomaterials and Nanotechnology, 2016, 6, 16.	3.0	8
30	Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film. Journal of Applied Physics, 2016, 119, 203106.	2.5	8
31	Defect-related electroluminescence from metal-oxide-semiconductor devices with ZrO2 films on silicon. Superlattices and Microstructures, 2016, 99, 186-191.	3.1	4
32	Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime. ACS Nano, 2016, 10, 4154-4163.	14.6	54
33	Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale, 2016, 8, 3704-3710.	5.6	36
34	Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films. Applied Physics Letters, 2015, 107, .	3.3	35
35	Room-Temperature Near-Infrared Electroluminescence from Boron-Diffused Silicon Pn-Junction Diodes. Frontiers in Materials, 2015, 2, .	2.4	3
36	Electrically pumped random lasing from hydrothermal ZnO films of large grains. Applied Surface Science, 2015, 332, 620-624.	6.1	16

#	Article	IF	CITATIONS
37	Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm, 2015, 17, 1833-1838.	2.6	81
38	Color-tunable electroluminescence from Eu-doped TiO_2/p^+-Si heterostructured devices: engineering of energy transfer. Optics Express, 2015, 23, 2819.	3.4	12
39	Silver nanoshells plasmonically controlled random lasing without dielectric spacer. , 2015, , .		Ο
40	Ultraviolet-visible electroluminescence from metal-oxide-semiconductor devices with CeO2 films on silicon. AIP Advances, 2015, 5, 037107.	1.3	8
41	Evolution of the sensitized Er3+ emission by silicon nanoclusters and luminescence centers in silicon-rich silica. Nanoscale Research Letters, 2014, 9, 456.	5.7	6
42	Temperature dependence of sensitized Er3+ luminescence in silicon-rich oxynitride films. Nanoscale Research Letters, 2014, 9, 489.	5.7	5
43	Enhanced broadband light absorption in silicon film by large-size lumpy silver particles. Applied Physics A: Materials Science and Processing, 2014, 117, 573-577.	2.3	3
44	The Kinetically Dominated Overgrowth of Flower-Like Silver Nanostructures and its Application for Surface-Enhanced Raman Scattering. Key Engineering Materials, 2014, 605, 259-262.	0.4	3
45	Sensitization of Er^3+ ions in silicon rich oxynitride films: effect of thermal treatments. Optics Express, 2014, 22, 13022.	3.4	9
46	Tunable surface plasmon resonance frequencies of monodisperse indium tin oxide nanoparticles by controlling composition, size, and morphology. Nanoscale Research Letters, 2014, 9, 547.	5.7	35
47	Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Research Letters, 2014, 9, 302.	5.7	24
48	Effects of excess silicon on the 1540 nm Er3+ luminescence in silicon rich oxynitride films. Applied Physics Letters, 2013, 103, .	3.3	13
49	Modulation effect of microstructures in silicon-rich oxide matrix on photoluminescence from silicon nanoclusters prepared by different fabrication techniques. Applied Physics A: Materials Science and Processing, 2013, 113, 121-126.	2.3	6
50	The modulation on luminescence of Er3+-doped silicon-rich oxide films by the structure evolution of silicon nanoclusters. Nanoscale Research Letters, 2013, 8, 34.	5.7	5
51	Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films. Nanoscale Research Letters, 2013, 8, 366.	5.7	12
52	Enhancement of room temperature dislocation-related photoluminescence of electron irradiated silicon. Journal of Applied Physics, 2013, 113, .	2.5	18
53	Effect of scattering from localized surface plasmon resonance on improving the luminescence efficiency of silicon nitride light-emitting devices. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	0
54	Surface plasmon response of metal spherical nanoshells coated with dielectric overlayer. Chemical Physics Letters, 2013, 587, 40-44.	2.6	4

#	Article	IF	CITATIONS
55	The location and doping effect of boron in Si nanocrystals embedded silicon oxide film. Applied Physics Letters, 2013, 102, .	3.3	34
56	Evolution of electroluminescence from silicon nitride light-emitting devices via nanostructural silver. Nanoscale, 2013, 5, 3435.	5.6	12
57	Tailoring Effect of Enhanced Local Electric Field From Metal Nanoparticles on Electroluminescence of Silicon-Rich Silicon Nitride. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4602504-4602504.	2.9	6
58	Formation of nanostructured emitter for silicon solar cells using catalytic silver nanoparticles. Applied Surface Science, 2013, 264, 621-624.	6.1	28
59	Light absorption enhancement of amorphous silicon film coupled with metal nanoshells. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 405.	2.1	11
60	Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures. Optics Express, 2013, 21, 846.	3.4	3
61	Optimization of the electroluminescence from SiNx-based light-emitting devices by modulating the size and morphology of silver nanostructures. Optics Express, 2013, 21, 1675.	3.4	3
62	Size-dependent coupling between localized surface plasmons and excitons in silicon nitride matrix. Optics Letters, 2013, 38, 2832.	3.3	4
63	Reduction of the efficiency droop in silicon nitride light-emitting devices by localized surface plasmons. Applied Physics Letters, 2013, 102, 081108.	3.3	6
64	Electrically tunable electroluminescence from SiNx-based light-emitting devices. Optics Express, 2012, 20, 17359.	3.4	14
65	Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons. Optical Materials Express, 2012, 2, 872.	3.0	10
66	Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios. Optical Materials Express, 2012, 2, 1437.	3.0	8
67	The origin of 0.78 eV line of the dislocation related luminescence in silicon. Journal of Applied Physics, 2012, 112, .	2.5	4
68	Electrically pumped wavelength-tunable blue random lasing from CdZnO films on silicon. Applied Physics Letters, 2012, 100, 231101.	3.3	1
69	The improvement effect of carrier injection by Ag nanoparticles on the electroluminescence of SiN <inf>x</inf> -based LEDs. , 2012, , .		Ο
70	The coupling between localized surface plasmons and excitons via Purcell effect. Nanoscale Research Letters, 2012, 7, 669.	5.7	8
71	Dislocation-related electroluminescence of silicon after electron irradiation. Solid State Communications, 2012, 152, 1956-1959.	1.9	8
72	Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film. Applied Physics Letters, 2012, 100, 031113.	3.3	24

#	Article	IF	CITATIONS
73	Nanostructured, Infraredâ€Transparent Magnesiumâ€Aluminate Spinel with Superior Mechanical Properties. International Journal of Applied Ceramic Technology, 2012, 9, 83-90.	2.1	38
74	Colloidal synthesis of monodisperse quaternary CuInSSe nanocrystals. Materials Chemistry and Physics, 2012, 132, 865-869.	4.0	8
75	Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation. Optics Communications, 2012, 285, 1864-1867.	2.1	5
76	Fabrication of TiO2 nanorod array/semiconductor nanocrystal hybrid structure for photovoltaic applications. Solar Energy, 2012, 86, 1359-1365.	6.1	22
77	Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties. Journal of Luminescence, 2012, 132, 313-317.	3.1	17
78	Preparation of echinus-like SiO2@Ag structures with the aid of the HCP phase. Chemical Communications, 2011, 47, 5169.	4.1	28
79	Fabrication of Flower-Like Silver Structures through Anisotropic Growth. Langmuir, 2011, 27, 6211-6217.	3.5	77
80	Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Solar Energy Materials and Solar Cells, 2011, 95, 2941-2945.	6.2	117
81	Size controllable synthesis of ultrafine silver particles through a one-step reaction. Materials Letters, 2011, 65, 628-631.	2.6	15
82	Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis. Nanoscale Research Letters, 2011, 6, 374.	5.7	31
83	An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 387, 17-22.	4.7	58
84	Surface plasmon enhanced light emission of silicon-rich silicon nitride: Dependence on metal island size. Applied Surface Science, 2011, 257, 5591-5594.	6.1	4
85	The modulation of surface texture for single-crystalline Si solar cells using calibrated silver nanoparticles as a catalyst. Nanotechnology, 2011, 22, 025703.	2.6	10
86	(Invited) Luminescence Properties of Silicon-Rich Silicon Nitride Films and Light Emitting Devices. ECS Transactions, 2011, 35, 3-19.	0.5	17
87	Defect-Related White-Light Emission from ZnO in an n-Mg0.2Zn0.8O/n-ZnO/SiO x Heterostructure on n-Si. Journal of Electronic Materials, 2010, 39, 652-655.	2.2	4
88	Growth of In2O3 Nanowires Catalyzed by Cu via a Solid–Liquid–Solid Mechanism. Nanoscale Research Letters, 2010, 5, 898-903.	5.7	9
89	Noninjection Synthesis of CdS and Alloyed CdSxSe1â^'x Nanocrystals Without Nucleation Initiators. Nanoscale Research Letters, 2010, 5, 966-971.	5.7	22
90	Preparation of metal@silica core–shell particle films by interfacial self-assembly. Journal of Colloid and Interface Science, 2010, 350, 58-62.	9.4	23

#	Article	IF	CITATIONS
91	Single step synthesis of CdSeS nanorods with chemical composition gradients. Journal of Crystal Growth, 2010, 312, 3406-3409.	1.5	7
92	Enhanced Optical Absorption of Amorphous Silicon Films by Ag Nanostructures. Chinese Physics Letters, 2010, 27, 037303.	3.3	11
93	Surface plasmon enhanced electroluminescence of SiNx film based MIS device. , 2010, , .		0
94	Photoluminescence from dislocations in silicon induced by irradiation of electron beams. , 2010, , .		0
95	Electrically pumped ultraviolet random lasing from heterostructures formed by bilayered MgZnO films on silicon. Applied Physics Letters, 2010, 97, 061111.	3.3	9
96	Structure and luminescence evolution of annealed Europium-doped silicon oxides films. Optics Express, 2010, 18, 27191.	3.4	49
97	Intense photoluminescence from Eu-doped silicon-rich silicon oxide films prepared by electron beam evaporation. , 2009, , .		0
98	Bidirectional direct-current electroluminescence from i-MgxZn1â^'xO/n-ZnO/SiOx double-barrier heterostructures on Si. Applied Physics Letters, 2009, 94, .	3.3	18
99	Morphology and phase selective synthesis of EuF3 nanostructures by polyelectrolyte assisted chemical reaction and their optical properties. Materials Chemistry and Physics, 2009, 115, 562-566.	4.0	5
100	Hybrid nanostructures of Au nanocrystals and ZnO nanorods: Layer-by-layer assembly and tunable blue-shift band gap emission. Materials Research Bulletin, 2009, 44, 889-892.	5.2	23
101	Controllable chemical reaction synthesis of Tb(OH)3 nanorods and their photoluminescence property. Materials Letters, 2009, 63, 1180-1182.	2.6	8
102	Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 920-922.	2.7	19
103	Enhanced photoluminescence of Tb3+ in SnO2 film by phosphorus diffusion process. Journal of Alloys and Compounds, 2009, 474, 246-249.	5.5	11
104	Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport. Optics Express, 2009, 17, 4712.	3.4	21
105	Electrophotoluminescence of sol-gel derived ZnO film: Effect of electric field on near-band-edge photoluminescence. Optics Express, 2009, 17, 11434.	3.4	7
106	Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Optics Express, 2009, 17, 14426.	3.4	71
107	Electric-field-induced random lasing from ZnO and Mg_01Zn_09O films optically pumped with an extremely low intensity. Optics Express, 2009, 17, 18513.	3.4	4
108	Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness. Journal of Applied Physics, 2009, 106, 063120.	2.5	31

DONGSHENG LI

#	Article	IF	CITATIONS
109	Electroluminescence from TiO2/p+-Si heterostructure. Applied Physics Letters, 2009, 94, .	3.3	14
110	Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2. Applied Physics Letters, 2009, 95, .	3.3	21
111	Carbon Nanotube-ZnO Nanosphere Heterostructures: Low-Temperature Chemical Reaction Synthesis, Photoluminescence, and Their Application for Room Temperature NH ₃ Gas Sensor. Science of Advanced Materials, 2009, 1, 13-17.	0.7	39
112	Luminescence and photoconductivity properties of porous polycrystalline silicon. Current Applied Physics, 2008, 8, 206-211.	2.4	3
113	Reductive hydrothermal synthesis of La(OH)3:Tb3+ nanorods as a new green emitting phosphor. Journal of Nanoparticle Research, 2008, 10, 307-312.	1.9	22
114	Hydrofluoric acid free synthesis of macropores on silicon by chemical vapor deposition and their photoluminescence. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 494-498.	2.7	0
115	Effect of rapid thermal treatment on photoluminescence of surface passivated porous silicon. Journal of Luminescence, 2008, 128, 317-320.	3.1	1
116	Optical properties of single-phase β-FeSi2 films fabricated by electron beam evaporation. Applied Surface Science, 2008, 254, 4875-4878.	6.1	13
117	Electron-beam-induced current evidence for room-temperature photoluminescence of silicon pn diode. Vacuum, 2008, 82, 1337-1340.	3.5	3
118	Photoluminescence of Tb3+-doped SiNx films with different Si concentrations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 126-130.	3.5	6
119	Controllable synthesis of uncapped metal nanoparticle assembly at the air–water interface. Materials Chemistry and Physics, 2008, 111, 271-274.	4.0	7
120	Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. II. Defect states electroluminescence. Journal of Applied Physics, 2008, 104, .	2.5	36
121	Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Applied Physics Letters, 2008, 92, .	3.3	156
122	Influence of substrates in ZnO devices on the surface plasmon enhanced light emission. Optics Express, 2008, 16, 8896.	3.4	24
123	Electroluminescence of silicon-rich silicon nitride light-emitting devices. , 2008, , .		3
124	PHOTOLUMINESCENCE, COMPOSITION AND MICROSTRUCTURE OF POROUS SILICON PREPARED BY DIFFERENT SUBSTRATES. Modern Physics Letters B, 2008, 22, 1211-1220.	1.9	2
125	Magnesium catalyzed growth of SiO2hierarchical nanostructures by a thermal evaporation process. Nanotechnology, 2008, 19, 165601.	2.6	13
126	Hydrothermal Synthesis and Photoluminescence of Eu _{2â^'<i>x</i>} Sm _{<i>x</i>} Sn ₂ O ₇ (<i>x</i> = 0–2.0) Nanophosphors. Journal of Nanoscience and Nanotechnology, 2008, 8, 1427-1431.	0.9	9

#	Article	IF	CITATIONS
127	Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room-temperature band tail states photoluminescence. Journal of Applied Physics, 2008, 104, 083504.	2.5	31
128	Photoluminescence enhancement of Silicon-rich silicon nitride film induced by silver localized surface plasmon. , 2008, , .		0
129	Electroluminescence of SnO2â^•p-Si heterojunction. Applied Physics Letters, 2008, 92, .	3.3	55
130	Low temperature chemical reaction synthesis of single-crystalline Eu(OH)3nanorods and their thermal conversion to Eu2O3nanorods. Nanotechnology, 2007, 18, 065605.	2.6	26
131	STUDY OF OPTICAL PROPERTIES OF POROUS SILICON PRODUCED BY METAL-AID. Modern Physics Letters B, 2007, 21, 1989-1997.	1.9	1
132	Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures. Journal of Applied Physics, 2007, 101, 103504.	2.5	29
133	Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. Applied Physics Letters, 2007, 91, .	3.3	126
134	347nm ultraviolet electroluminescence from MgxZn1â^'xO-based light emitting devices. Applied Physics Letters, 2007, 90, 251115.	3.3	22
135	Electroluminescent and carrier transport mechanisms of MgxZn1â^'xOâ^•Si heterojunctions. Journal of Applied Physics, 2007, 102, 083106.	2.5	3
136	Enhanced red electroluminescence from a polycrystalline diamond film/Si heterojunction structure. Applied Physics Letters, 2007, 90, 161123.	3.3	9
137	Electrophotoluminescence of ZnO film. Applied Physics Letters, 2007, 91, 021105.	3.3	24
138	Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters. Applied Physics Letters, 2007, 90, 131903.	3.3	124
139	A comparison of cathodoluminescence and photoluminescence of porous silicon and the influence of aging and electron irradiation of these properties. Solid State Communications, 2007, 143, 197-201.	1.9	4
140	The influence of microstructure on optical properties of porous silicon. Solid-State Electronics, 2007, 51, 678-682.	1.4	8
141	Effects of defect, carrier concentration and annealing process on the photoluminescence of silicon pn diodes. Materials Science in Semiconductor Processing, 2007, 10, 173-178.	4.0	4
142	Hydrothermal Synthesis and Photoluminescence Properties of La _{2â^'<i>x</i>} Eu _{<i>x</i>} Sn ₂ O ₇ (<i>x</i> =0–2.0) Nanocrystals. Journal of the American Ceramic Society, 2007, 90, 3095-3098.	3.8	27
143	Surface synthesis of PbS nanoparticles on silica spheres by a sonochemical approach. Journal of Materials Science, 2007, 42, 1376-1380.	3.7	12
144	The optical properties of porous silicon produced by metal-assisted anodic etching. Journal of Materials Science, 2007, 42, 8496-8500.	3.7	11

DONGSHENG LI

#	Article	IF	CITATIONS
145	Study of photoconductivity and photoluminescence of organic/porous silicon complexes. Applied Surface Science, 2007, 253, 4566-4569.	6.1	3
146	Fully exohydrogenated Si60fullerene cage. Molecular Simulation, 2006, 32, 663-666.	2.0	16
147	Enhancement and patterning of ultraviolet emission in ZnO with an electron beam. Applied Physics Letters, 2006, 88, 134103.	3.3	103
148	Precise Fabrication of Point Defects in Self-Assembled Three-Dimensional Macroporous Photonic Crystals. Journal of Physical Chemistry B, 2006, 110, 1107-1110.	2.6	14
149	Low-Temperature Growth of Uniform ZnO Particles with Controllable Ellipsoidal Morphologies and Characteristic Luminescence Patterns. Journal of Physical Chemistry B, 2006, 110, 19147-19153.	2.6	56
150	Al-assisted Anodic Etched Porous Silicon. Journal of Materials Science, 2006, 41, 5283-5286.	3.7	6
151	Effect of annealing on photoluminescence of passivated porous silicon. Solid-State Electronics, 2006, 50, 1529-1531.	1.4	15
152	Thermal-desorption induced enhancement and patterning of ultraviolet emission in chemically grown ZnO. Nanotechnology, 2006, 17, 2789-2793.	2.6	24
153	Photoluminescence of Tb3+ doped SiNx films grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2006, 100, 083106.	2.5	25
154	Effect of post-treatment processes on the photoluminescence of porous silicon. Physica B: Condensed Matter, 2005, 364, 180-185.	2.7	12
155	Excitation transfer from porous silicon to polymer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 229-231.	3.5	10
156	Annealing and amorphous silicon passivation of porous silicon with blue light emission. Applied Surface Science, 2005, 252, 1065-1069.	6.1	15
157	Photoluminescence of oxidized porous silicon under UV-light illumination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 95-98.	3.5	24
158	Blue emission of porous silicon intensified by boron deposition. Journal of Materials Science, 2005, 40, 5071-5073.	3.7	2
159	Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process. Crystal Growth and Design, 2005, 5, 547-550.	3.0	320
160	The effect of the ramping rate on oxygen precipitation and the denuded zone in heavily doped Czochralski silicon. Journal of Physics Condensed Matter, 2004, 16, 1539-1545.	1.8	10
161	Defects in nitrogen-doped multicrystalline silicon. Physica B: Condensed Matter, 2004, 344, 1-4.	2.7	6
162	Influence of oxygen precipitates on the warpage of annealed silicon wafers. Microelectronic Engineering, 2003, 66, 345-351.	2.4	12

#	Article	IF	CITATIONS
163	Effect of heat treatment on the optical and electrical properties of nitrogen-doped silicon samples. Microelectronic Engineering, 2003, 66, 297-304.	2.4	4
164	Dislocation luminescence in nitrogen-doped Czochralski and float zone silicon. Journal of Physics Condensed Matter, 2002, 14, 13247-13254.	1.8	20
165	Oxygen in Czochralski silicon used for solar cells. Solar Energy Materials and Solar Cells, 2002, 72, 133-138.	6.2	10
166	Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy. Journal of Applied Physics, 2001, 90, 4219-4223.	2.5	301
167	Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method. Physica B: Condensed Matter, 2001, 308-310, 450-453.	2.7	26
168	Characteristics of the GaN Polar Surface during an Etching Process in KOH Solution. Physica Status Solidi A, 2000, 180, 357-362.	1.7	29
169	Infrared absorption of nitrogen–oxygen complex in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 72, 121-123.	3.5	12
170	Characteristics of the GaN Polar Surface during an Etching Process in KOH Solution. , 2000, 180, 357.		1
171	Effects of nitrogen on dislocations in silicon during heat treatment. Physica B: Condensed Matter, 1999, 273-274, 553-556.	2.7	39