Miguel L Concha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8786228/publications.pdf

Version: 2024-02-01

172386 138417 4,731 64 29 58 citations g-index h-index papers 69 69 69 4850 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature, 2000, 405, 76-81.	13.7	919
2	A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain. Neuron, 2000, 28, 399-409.	3.8	257
3	A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes and Development, 2001, 15, 1427-1434.	2.7	242
4	Asymmetry in the epithalamus of vertebrates. Journal of Anatomy, 2001, 199, 63-84.	0.9	232
5	Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development (Cambridge), 2003, 130, 4037-4046.	1.2	231
6	Early Stages of Zebrafish Eye Formation Require the Coordinated Activity of Wnt11, Fz5, and the Wnt/ \hat{l}^2 -Catenin Pathway. Neuron, 2005, 47, 43-56.	3.8	203
7	Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus. Current Biology, 2005, 15, 238-243.	1.8	191
8	Non-canonical Wnt signalling and regulation of gastrulation movements. Seminars in Cell and Developmental Biology, 2002, 13, 251-260.	2.3	187
9	Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality. Neuron, 2003, 39, 423-438.	3.8	175
10	Cell migration: from tissue culture to embryos. Development (Cambridge), 2014, 141, 1999-2013.	1.2	147
11	Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development (Cambridge), 2003, 130, 5375-5384.	1.2	145
12	Encoding asymmetry within neural circuits. Nature Reviews Neuroscience, 2012, 13, 832-843.	4.9	125
13	Origin and shaping of the laterality organ in zebrafish. Development (Cambridge), 2008, 135, 2807-2813.	1.2	112
14	<scp>ALS</scp> â€linked protein disulfide isomerase variants cause motor dysfunction. EMBO Journal, 2016, 35, 845-865.	3.5	109
15	IRE1 $\hat{l}\pm$ governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nature Cell Biology, 2018, 20, 942-953.	4.6	98
16	Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development (Cambridge), 2004, 131, 3581-3592.	1.2	94
17	Lefty Antagonism of Squint Is Essential for Normal Gastrulation. Current Biology, 2002, 12, 2129-2135.	1.8	89
18	An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry. Neuron, 2009, 61, 27-34.	3.8	84

#	Article	IF	CITATIONS
19	Expression of nk2.1a during early development of the thyroid gland in zebrafish. Mechanisms of Development, 2000, 95, 267-270.	1.7	82
20	Hedgehog and Fgf signaling pathways regulate the development oftphR-expressing serotonergic raphe neurons in zebrafish embryos. Journal of Neurobiology, 2004, 60, 275-288.	3.7	80
21	Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Research Reviews, 2002, 39, 141-153.	9.1	75
22	TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death and Differentiation, 2012, 19, 1013-1026.	5.0	70
23	Planar cell polarity signalling regulates cell adhesion properties in progenitors of the zebrafish laterality organ. Development (Cambridge), 2010, 137, 3459-3468.	1.2	58
24	Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 991-1003.	1.8	52
25	The dorsal diencephalic conduction system of zebrafish as a model of vertebrate brain lateralisation. NeuroReport, 2004, 15, 1843-1846.	0.6	48
26	Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease. Parkinsonism and Related Disorders, 2017, 35, 17-24.	1.1	43
27	Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. Journal of Neurochemistry, 2006, 97, 1279-1287.	2.1	40
28	Directional asymmetry in the volume of the human habenula. Brain Structure and Function, 2017, 222, 1087-1092.	1.2	40
29	Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish. Nature Communications, 2017, 8, 15431.	5.8	37
30	Functions of BarH transcription factors during embryonic development. Developmental Biology, 2007, 302, 367-375.	0.9	36
31	Mechanisms of directional asymmetry in the zebrafish epithalamus. Seminars in Cell and Developmental Biology, 2009, 20, 498-509.	2.3	36
32	Insights into the organization of dorsal spinal cord pathways from an evolutionarily conserved <i>raldh2</i> intronic enhancer. Development (Cambridge), 2010, 137, 507-518.	1.2	34
33	Morphologic and immunohistochemical organization of the human habenular complex. Journal of Comparative Neurology, 2011, 519, 3727-3747.	0.9	33
34	Asymmetry in the epithalamus of vertebrates., 2001, 199, 63.		32
35	CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood, 2021, 138, 1067-1080.	0.6	29
36	Evolutionary Plasticity of Habenular Asymmetry with a Conserved Efferent Connectivity Pattern. PLoS ONE, 2012, 7, e35329.	1.1	27

#	Article	IF	Citations
37	KCTD5, a novel TRPM4â€regulatory protein required for cell migration as a new predictor for breast cancer prognosis. FASEB Journal, 2020, 34, 7847-7865.	0.2	26
38	Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development (Cambridge), 2013, 140, 3997-4007.	1.2	23
39	Vertebrate gastrulation: Calcium waves orchestrate cell movements. Current Biology, 2001, 11, R470-R472.	1.8	22
40	Zebrafish BarH-like genes define discrete neural domains in the early embryo. Gene Expression Patterns, 2006, 6, 347-352.	0.3	22
41	Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 573-588.	1.1	19
42	Gastrulation in an annual killifish: Molecular and cellular events during germ layer formation in <i>Austrolebias</i> . Developmental Dynamics, 2017, 246, 812-826.	0.8	18
43	Nodal signalling and asymmetry of the nervous system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150401.	1.8	16
44	Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. Science Advances, 2021, 7, eabe5469.	4.7	14
45	Mutation in protein disulfide isomerase A3 causes neurodevelopmental defects by disturbing endoplasmic reticulum proteostasis. EMBO Journal, 2022, 41, e105531.	3.5	11
46	Computational Methods for Analysis of Dynamic Events in Cell Migration. Current Molecular Medicine, 2014, 14, 291-307.	0.6	10
47	Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Frontiers in Neuroanatomy, 2021, 15, 728720.	0.9	8
48	Expression ofpcp4a in subpopulations of CNS neurons in zebrafish. Journal of Comparative Neurology, 2006, 495, 769-787.	0.9	6
49	Cell migration driven by substrate deformation gradients. Physical Biology, 2019, 16, 066001.	0.8	6
50	Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. ELife, 2021, 10, .	2.8	6
51	Impronta Genómica y Desarrollo Embrionario. International Journal of Morphology, 2012, 30, 1453-1457.	0.1	5
52	Heterochrony and Morphological Variation of Epithalamic Asymmetry. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 157-164.	0.6	5
53	Expression of RPRM/rprm in the Olfactory System of Embryonic Zebrafish (Danio rerio). Frontiers in Neuroanatomy, 2018, 12, 23.	0.9	5
54	The Reprimo gene family member, reprimo-like (rprml), is required for blood development in embryonic zebrafish. Scientific Reports, 2019, 9, 7131.	1.6	4

#	Article	IF	CITATIONS
55	An evolutionary perspective on habenular asymmetry in humans. Journal of Neurology and Neuromedicine, 2016, 1, 44-50.	0.9	4
56	Geometrical characterization of active contraction pulses in epithelial cells using the two-dimensional vertex model. Journal of the Royal Society Interface, 2022, 19, 20210851.	1.5	4
57	Geographic variation in the laryngeal morphology of a widely distributed South-American anuran: behavioural and evolutionary implications. Zoological Journal of the Linnean Society, 2020, 190, 140-148.	1.0	2
58	Prion Function and Pathophysiology in Non-Mammalian Models. Current Molecular Medicine, 2017, 17, 13-23.	0.6	2
59	Editorial: From Ecology to Brain Development: Bridging Separate Evolutionary Paradigms. Frontiers in Neuroscience, 2018, 12, 447.	1.4	1
60	Early replicating DNA involved in the G2 to M transition in Allium cepa L meristematic cells. Biology of the Cell, 1995, 83, 99-103.	0.7	0
61	genes as primary determinants of population level lateralisation. Behavioral and Brain Sciences, 2005, 28, 593-594.	0.4	O
62	Genetics: A Common Origin for Neuronal Asymmetries?. Current Biology, 2014, 24, R201-R204.	1.8	0
63	Developmental Biology in Chile: historical perspectives and future challenges. International Journal of Developmental Biology, 2021, 65, 29-47.	0.3	O
64	A tale of turns and cycles guiding to neural crest migration - an interview with Roberto Mayor. International Journal of Developmental Biology, 2021, 65, 123-129.	0.3	O