Han Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785924/publications.pdf

Version: 2024-02-01

28242 48277 11,103 319 55 citations h-index papers

g-index 327 327 327 8503 docs citations times ranked citing authors all docs

88

#	Article	IF	CITATIONS
1	Temperature and size dependent mechanical properties of vapor synthesized zinc tungstate nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 114990.	1.3	6
2	Unveiling solidification mode transition and crystallographic characteristics in laser 3D-printed Al2O3-ZrO2 eutectic ceramics. Scripta Materialia, 2022, 210, 114433.	2.6	12
3	Interfacial adhesion assessment of SiN/GaAs film/substrate system using microcantilever bending technique. Journal Physics D: Applied Physics, 2022, 55, 245104.	1.3	1
4	Threshold damage mechanisms in brittle solids and their impact on advanced technologies. Acta Materialia, 2022, 232, 117921.	3.8	19
5	Frictional shear stress of ZnO nanowires on natural and pyrolytic graphite substrates. Friction, 2022, 10, 2059-2068.	3.4	2
6	Deformation and removal mechanism of single crystal gallium nitride in nanoscratching. Ceramics International, 2022, 48, 23793-23799.	2.3	7
7	Multicolor Biexciton Lasers Based on 2D Perovskite Single Crystalline Flakes. Advanced Optical Materials, 2022, 10, .	3.6	7
8	Towards tailorable interface microstructure through Solid-state interface reaction between synthetic diamond grits and sputtered Ni-Cr binary alloy. Applied Surface Science, 2022, 596, 153531.	3.1	10
9	Tribological performance of zeolite/sodium dodecylbenzenesulfonate hybrid water-based lubricants. Applied Surface Science, 2022, 598, 153764.	3.1	2
10	Size- and temperature-dependent Young's modulus of individual ZnS nanobelts. Journal Physics D: Applied Physics, 2022, 55, 364001.	1.3	0
11	Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing. Applied Surface Science, 2022, 599, 153982.	3.1	51
12	A novel lapping process for single-crystal sapphire using hybrid nanoparticle suspensions. International Journal of Mechanical Sciences, 2021, 191, 106099.	3.6	26
13	Micromechanics of machining and wear in hard and brittle materials. Journal of the American Ceramic Society, 2021, 104, 5-22.	1.9	63
14	A cost-effective Fe-rich compositionally complicated alloy with superior high-temperature oxidation resistance. Corrosion Science, 2021, 180, 109190.	3.0	28
15	Science and art of ductile grinding of brittle solids. International Journal of Machine Tools and Manufacture, 2021, 161, 103675.	6.2	138
16	Interfacial and tribological properties of laser deposited TiOxNy/Ti composite coating on Ti alloy. Tribology International, 2021, 155, 106758.	3.0	17
17	Catalyst-free synthesis and mechanical characterization of TaC nanowires. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	10
18	Hydrolytic degradation of porous poly(hydroxybutyrate-co-hydroxyvalerate) scaffolds manufactured using selective laser sintering. Polymer Degradation and Stability, 2021, 187, 109545.	2.7	12

#	Article	IF	CITATIONS
19	Temperature coefficient of Young's modulus of silver microwhiskers determined by a laser Doppler vibration measurement. Modern Physics Letters B, 2021, 35, 2150350.	1.0	2
20	The removal mechanism and force modelling of gallium oxide single crystal in single grit grinding and nanoscratching. International Journal of Mechanical Sciences, 2021, 204, 106562.	3.6	33
21	Roughness-dependent tribological characteristics of water-based GO suspensions with ZrO2 and TiO2 nanoparticles as additives. Tribology International, 2021, 161, 107073.	3.0	16
22	Laser gas alloying of Ti-6Al-4V in air for tribological applications. Applied Surface Science, 2021, 570, 151125.	3.1	3
23	Polishing performance and mechanism of a water-based nanosuspension using diamond particles and GO nanosheets as additives. Tribology International, 2021, 164, 107241.	3.0	12
24	Size- and temperature-dependent Young's modulus of SiC nanowires determined by a laser-Doppler vibration measurement. Applied Physics Letters, 2021, 118, .	1.5	12
25	A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology, 2021, 32, 105701.	1.3	20
26	Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. Journal of Manufacturing Processes, 2021, 71, 625-644.	2.8	39
27	The adhesion of a mica nanolayer on a single-layer graphene supported by SiO ₂ substrate characterised in air. Nanotechnology, 2021, 32, 045701.	1.3	3
28	Microstructures and mechanical properties of wear-resistant titanium oxide coatings deposited on Ti-6Al-4V alloy using laser cladding. Journal of the European Ceramic Society, 2020, 40, 798-810.	2.8	34
29	Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy, 2020, 67, 104225.	8.2	69
30	Reactive wetting of Sn-V solder alloys on polycrystalline CVD diamond. Applied Surface Science, 2020, 504, 144508.	3.1	9
31	Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. Journal of Materials Processing Technology, 2020, 277, 116444.	3.1	26
32	A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Additive Manufacturing, 2020, 32, 101034.	1.7	41
33	Deformation characteristics and surface generation modelling of crack-free grinding of GGG single crystals. Journal of Materials Processing Technology, 2020, 279, 116577.	3.1	100
34	New insights into the growth mechanism of 3D-printed Al2O3â€"Y3Al5O12 binary eutectic composites. Scripta Materialia, 2020, 178, 274-280.	2.6	22
35	The Adhesion of Mica Nanolayers on a Silicon Substrate in Air. Advanced Materials Interfaces, 2020, 7, 2000541.	1.9	3
36	Laser deposition of wear-resistant titanium oxynitride/titanium composite coatings on Ti-6Al-4V alloy. Applied Surface Science, 2020, 531, 147212.	3.1	34

#	Article	IF	CITATIONS
37	Eco-Friendly Water-Based Nanolubricants for Industrial-Scale Hot Steel Rolling. Lubricants, 2020, 8, 96.	1.2	18
38	Microstructures and bonding strength of synthetic diamond brazed by near-eutectic Ag–Cu–in–Ti filler alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139711.	2.6	27
39	Interfacial adhesion of ZnO nanowires on a Si substrate in air. Nanoscale, 2020, 12, 8237-8247.	2.8	14
40	Deformation and removal of semiconductor and laser single crystals at extremely small scales. International Journal of Extreme Manufacturing, 2020, 2, 012006.	6.3	26
41	Critique of materialsâ€based models of ductile machining in brittle solids. Journal of the American Ceramic Society, 2020, 103, 6096-6100.	1.9	59
42	Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles. Materials Research Bulletin, 2020, 126, 110837.	2.7	34
43	Novel water-based nanolubricant with superior tribological performance in hot steel rolling. International Journal of Extreme Manufacturing, 2020, 2, 025002.	6.3	24
44	Detection of powder bed defects in selective laser sintering using convolutional neural network. International Journal of Advanced Manufacturing Technology, 2020, 107, 2485-2496.	1.5	25
45	Deformation and fracture behaviours of a YAG single crystal characterized using nanoindentation method. Materials Characterization, 2020, 164, 110302.	1.9	14
46	Reactive Infiltration and Microstructural Characteristics of Sn-V Active Solder Alloys on Porous Graphite. Materials, 2020, 13, 1532.	1.3	5
47	Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant. Oxidation of Metals, 2019, 92, 315-335.	1.0	9
48	Low-temperature wetting mechanisms of polycrystalline chemical vapour deposition (CVD) diamond by Sn-Ti solder alloys. Materials and Design, 2019, 182, 108039.	3.3	20
49	Low-temperature wetting of sapphire using Sn–Ti active solder alloys. Ceramics International, 2019, 45, 22175-22182.	2.3	25
50	Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon, 2019, 153, 52-61.	5.4	104
51	Young's modulus of Sb2O3 micro- and nanowires determined accurately by a nanomanipulation-assisted thermal resonance method. AIP Advances, 2019, 9, .	0.6	4
52	Reactive wetting of binary Sn Cr alloy on polycrystalline chemical vapour deposited diamond at relatively low temperatures. Diamond and Related Materials, 2019, 92, 92-99.	1.8	14
53	Yttria stabilized zirconia (YSZ) thin wall structures fabricated using laser engineered net shaping (LENS). International Journal of Advanced Manufacturing Technology, 2019, 105, 4491-4498.	1.5	25
54	High-Speed Grinding of Advanced Ceramics and Combination Materials. Precision Manufacturing, 2019, , 1-39.	0.1	0

#	Article	IF	CITATIONS
55	Deformation mechanism and force modelling of the grinding of YAG single crystals. International Journal of Machine Tools and Manufacture, 2019, 143, 23-37.	6.2	207
56	Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear, 2019, 426-427, 792-804.	1.5	32
57	The virtually added mass effect of air on a pre-stressed micro-diaphragm sensor. Vacuum, 2019, 166, 57-63.	1.6	4
58	Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 1-8.	1.5	14
59	Akermanite reinforced PHBV scaffolds manufactured using selective laser sintering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2596-2610.	1.6	18
60	Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping. Acta Materialia, 2019, 170, 24-37.	3.8	82
61	Effect of Ovariectomy on Tissue-Level Changes in Rat Maxilla. International Journal of Oral and Maxillofacial Implants, 2019, 34, 865-872.	0.6	0
62	Synergistic tribological performance of a water based lubricant using graphene oxide and alumina hybrid nanoparticles as additives. Tribology International, 2019, 135, 170-180.	3.0	61
63	Synthesis of Five-fold-twinned silver microwhiskers by physical vapor deposition. International Journal of Modern Physics B, 2019, 33, 1950371.	1.0	3
64	Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates. Precision Engineering, 2019, 60, 291-298.	1.8	14
65	Investigating the Effects of Electron Beam Irradiation on Nanoscale Adhesion. , 2019, , .		3
66	Temperature dependent Young's modulus of ZnO nanowires. Nanotechnology, 2019, 30, 065705.	1.3	16
67	Microscale interfacial adhesion assessment in a multilayer by a miniaturised four-point bending test. Mechanics of Materials, 2019, 129, 341-351.	1.7	6
68	<i>In vitro</i> degradation of a unique porous PHBV scaffold manufactured using selective laser sintering. Journal of Biomedical Materials Research - Part A, 2019, 107, 154-162.	2.1	28
69	A laterally sensitive colloidal probe for accurately measuring nanoscale adhesion of textured surfaces. Nano Research, 2019, 12, 389-396.	5.8	15
70	Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars. Journal of Materials Science, 2019, 54, 1958-1966.	1.7	14
71	Environmentâ€Dependent Adhesion Energy of Mica Nanolayers Determined by a Nanomanipulationâ€Based Bridging Method. Advanced Materials Interfaces, 2019, 6, 1801552.	1.9	6
72	Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be. Corrosion Science, 2019, 147, 357-371.	3.0	30

#	Article	IF	CITATIONS
73	The kinetic frictional shear stress of ZnO nanowires on graphite and mica substrates. Applied Surface Science, 2019, 465, 584-590.	3.1	15
74	Nanogrinding induced surface and deformation mechanism of single crystal \hat{l}^2 -Ga 2 O 3. Materials Science in Semiconductor Processing, 2018, 79, 165-170.	1.9	45
75	Tribological Characteristics of Aqueous Graphene Oxide, Graphitic Carbon Nitride, and Their Mixed Suspensions. Tribology Letters, 2018, 66, 1.	1.2	32
76	Characterizing the surface forces between two individual nanowires using optical microscopy based nanomanipulation. Nanotechnology, 2018, 29, 225705.	1.3	3
77	Selective laser melting of alumina: A single track study. Ceramics International, 2018, 44, 9484-9493.	2.3	64
78	Interfacial microstructure and mechanical properties of synthetic diamond brazed by Ni-Cr-P filler alloy. International Journal of Refractory Metals and Hard Materials, 2018, 74, 52-60.	1.7	48
79	Enhanced adhesion of ZnO nanowires during in situ scanning electron microscope peeling. Nanoscale, 2018, 10, 3410-3420.	2.8	25
80	Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60†wt†ppm Be attributed to the formation of a more protective (Mg,Be)O surface oxide. Corrosion Science, 2018, 132, 272-283.	3.0	31
81	Facile synthesis and excellent microwave absorption properties of FeCo-C core–shell nanoparticles. Nanotechnology, 2018, 29, 085604.	1.3	57
82	Effects of Surface Roughness on the Kinetic Friction of SiC Nanowires on SiN Substrates. Tribology Letters, 2018, 66, 1.	1.2	12
83	Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 2018, 117, 24-38.	3.0	126
84	Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 151-160.	1.5	44
85	Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants, 2018, 6, 57.	1.2	26
86	An experimental study of temperature at the tip of point-attack pick during rock cutting process. International Journal of Rock Mechanics and Minings Sciences, 2018, 107, 39-47.	2.6	22
87	High speed grinding characteristics and machinability of WC-10Co-4Cr coatings deposited via high velocity oxygen fuel spraying. Journal of Mechanical Science and Technology, 2018, 32, 3283-3290.	0.7	2
88	Laser deposition of compositionally graded titanium oxide on Ti6Al4V alloy. Ceramics International, 2018, 44, 20851-20861.	2.3	20
89	Enhanced electromagnetic wave absorption of Ni–C core-shell nanoparticles by HCP-Ni phase. Materials Research Express, 2018, 5, 095013.	0.8	18
90	Inducing stable interfacial delamination in a multilayer system by four-point bending of microbridges. Surface and Coatings Technology, 2017, 320, 478-482.	2.2	13

#	Article	IF	Citations
91	A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 2017, 109, 398-408.	3.0	180
92	Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing. Tribology Letters, 2017, 65, 1.	1.2	56
93	Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel. Materials Science in Semiconductor Processing, 2017, 63, 97-106.	1.9	30
94	Recent advances in micro- and nano-machining technologies. Frontiers of Mechanical Engineering, 2017, 12, 18-32.	2.5	75
95	Analysis of TiO 2 nano-additive water-based lubricants in hot rolling of microalloyed steel. Journal of Manufacturing Processes, 2017, 27, 26-36.	2.8	63
96	Deformation, failure and removal mechanisms of thin film structures in abrasive machining. Advances in Manufacturing, 2017, 5, 1-19.	3.2	22
97	Formation of TiC via interface reaction between diamond grits and Sn-Ti alloys at relatively low temperatures. International Journal of Refractory Metals and Hard Materials, 2017, 66, 252-257.	1.7	16
98	A comparative study on magnetorheological planarization using modified magnetic yokes and brick magnet. International Journal of Advanced Manufacturing Technology, 2017, 91, 2831-2841.	1.5	7
99	A comparative study of conventional and high speed grinding characteristics of a thin film multilayer structure. Precision Engineering, 2017, 50, 222-234.	1.8	8
100	The effect of surface texture on the kinetic friction of a nanowire on a substrate. Scientific Reports, 2017, 7, 44907.	1.6	11
101	Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal–organic framework molecular sieving membrane. Journal of Materials Chemistry A, 2017, 5, 16255-16262.	5.2	42
102	The Mechanical Properties of Nanowires. Advanced Science, 2017, 4, 1600332.	5.6	152
103	The pH-dependent structural and tribological behaviour of aqueous graphene oxide suspensions. Tribology International, 2017, 116, 460-469.	3.0	49
104	Effects of surface defects on the mechanical properties of ZnO nanowires. Scientific Reports, 2017, 7, 9547.	1.6	33
105	The deformation pattern of single crystal \hat{l}^2 -Ga 2 O 3 under nanoindentation. Materials Science in Semiconductor Processing, 2017, 71, 321-325.	1.9	29
106	Gram-scale synthesis, thermal stability, magnetic properties, and microwave absorption application of extremely small Co–C core–shell nanoparticles. Materials Research Express, 2017, 4, 075044.	0.8	17
107	Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Scientific Reports, 2017, 7, 15885.	1.6	174
108	Parametric study of rock cutting with SMARTâ^—CUT picks. Tunnelling and Underground Space Technology, 2017, 61, 134-144.	3.0	30

#	Article	IF	Citations
109	The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates. Applied Surface Science, 2016, 389, 797-801.	3.1	11
110	A study of the deformation and failure mechanisms of protective intermetallic coatings on AZ91 Mg alloys using microcantilever bending. Materials Characterization, 2016, 120, 337-344.	1.9	12
111	Unique structure and surface-related elastic modulus of alumina nanobelts. Nanotechnology, 2016, 27, 475701.	1.3	11
112	Characterising the material properties at the interface between skin and a skin vaccination microprojection device. Acta Biomaterialia, 2016, 36, 186-194.	4.1	18
113	Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology, 2016, 27, 065709.	1.3	9
114	Formulations for microprojection/microneedle vaccine delivery: Structure, strength and release profiles. Journal of Controlled Release, 2016, 225, 40-52.	4.8	74
115	Characteristics and removal mechanism in laser cutting of cBN–WC–10Co composites. Journal of Materials Processing Technology, 2016, 230, 42-49.	3.1	39
116	Hollow Carbon Nanospheres with Extremely Small Size as Anode Material in Lithium-Ion Batteries with Outstanding Cycling Stability. Journal of Physical Chemistry C, 2016, 120, 3139-3144.	1.5	39
117	Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers. Carbon, 2016, 96, 904-910.	5.4	35
118	Critical properties of Cu 6 Sn 5 in electronic devices: Recent progress and a review. Current Opinion in Solid State and Materials Science, 2016, 20, 55-76.	5.6	87
119	Mechanical load-induced interfacial failure of a thin film multilayer in nanoscratching and diamond lapping. Journal of Materials Processing Technology, 2016, 229, 528-540.	3.1	8
120	Graphene/titanium carbide composites prepared by sol–gel infiltration and spark plasma sintering. Ceramics International, 2016, 42, 122-131.	2.3	42
121	Surface integrity and removal mechanism of chemical mechanical grinding of silicon wafers using a newly developed wheel. International Journal of Advanced Manufacturing Technology, 2016, 83, 1231-1239.	1.5	8
122	Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement. Precision Engineering, 2016, 43, 93-104.	1.8	24
123	Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. Journal of Materials Research, 2015, 30, 1852-1860.	1.2	15
124	Fracture strength characterization of protective intermetallic coatings on AZ91E Mg alloys using FIB-machined microcantilever bending technique. Journal of Materials Research, 2015, 30, 1678-1685.	1.2	12
125	Investigation of the dynamic bending properties of MoS2 thin films by interference colours. Scientific Reports, 2015, 5, 18441.	1.6	10
126	The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Applied Physics Letters, 2015, 107, 103102.	1.5	24

#	Article	IF	CITATIONS
127	Fracture Strain of SiC Nanowires and Direct Evidence of Electronâ€Beam Induced Amorphisation in the Strained Nanowires. Small, 2015, 11, 1672-1676.	5.2	48
128	A new method for measuring the flatness of large and thin silicon substrates using a liquid immersion technique. Measurement Science and Technology, 2015, 26, 115008.	1.4	6
129	Synthesis and magnetic properties of Fe3C–C core–shell nanoparticles. Nanotechnology, 2015, 26, 085601.	1.3	28
130	Interfacial energy release rates of SiN/GaAs film/substrate systems determined using a cyclic loading dual-indentation method. Thin Solid Films, 2015, 589, 822-830.	0.8	13
131	A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method. Nanotechnology, 2015, 26, 165702.	1.3	16
132	Strain rate dependence in the nanoindentation-induced deformation of Mg-Al intermetallic compounds produced by packed powder diffusion coating. Metals and Materials International, 2015, 21, 793-798.	1.8	3
133	Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization. Precision Engineering, 2015, 40, 309-317.	1.8	41
134	Fabrication of small aspheric moulds using single point inclined axis grinding. Precision Engineering, 2015, 39, 107-115.	1.8	31
135	Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al–Ni–Y–Co–La metallic glass. Materials & Design, 2015, 65, 1-6.	5.1	74
136	Ni ₃ C-assisted growth of carbon nanofibres 300 \hat{A}° C by thermal CVD. Nanotechnology, 2014, 25, 325602.	1.3	16
137	Molecular Dynamics Simulation of the Deformation of Single Crystal Gallium Arsenide. Applied Mechanics and Materials, 2014, 553, 60-65.	0.2	2
138	Nanomechanical properties of Mg–Al intermetallic compounds produced by packed powder diffusion coating (PPDC) on the surface of AZ91E. Journal of Alloys and Compounds, 2014, 587, 527-532.	2.8	27
139	Deformation and Removal Characteristics of Multilayered Thin Film Structures in Nanoscratching and Diamond Lapping. Advanced Materials Research, 2014, 1017, 61-65.	0.3	0
140	A Preliminary Study of Surface Integrity and Wheel Wear in the Grinding of Multilayered Thin Film Structures. Advanced Materials Research, 2014, 1017, 88-91.	0.3	0
141	The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting. Materials & Design, 2014, 63, 407-411.	5.1	113
142	Controlled synthesis and optical properties of Cu/C core/shell nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	17
143	Determination of the energy release rate in the interfacial delamination of silicon nitride film on gallium arsenide substrate via nanoindentation. Journal of Materials Research, 2014, 29, 801-810.	1.2	16
144	Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 370-379.	2.6	134

#	Article	IF	CITATIONS
145	Microstructure characterization and nanomechanics of cold-sprayed pure Al and Al-Al2O3 composite coatings. Surface and Coatings Technology, 2013, 232, 216-223.	2.2	55
146	A focused review on nanoscratching-induced deformation of monocrystalline silicon. International Journal of Surface Science and Engineering, 2013, 7, 51.	0.4	11
147	Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu,Ni)6Sn5 on diverse crystal planes. Materials Science & Diple Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 566, 126-133.	2.6	35
148	Determination of the minimum Ni concentration to prevent the \hat{i} - to \hat{i} -4+1 polymorphic transformation of stoichiometric Cu6Sn5. Scripta Materialia, 2013, 68, 595-598.	2.6	26
149	Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. Nanotechnology, 2013, 24, 505705.	1.3	19
150	Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures. Journal of Electronic Materials, 2013, 42, 304-311.	1.0	28
151	An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. Nanotechnology, 2013, 24, 285703.	1.3	32
152	Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales. Biomaterials, 2013, 34, 2087-2097.	5.7	75
153	Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 480-485.	2.6	14
154	Surface and subsurface deformation characteristics of cemented tungsten carbide under nanoscratching. International Journal of Surface Science and Engineering, 2013, 7, 122.	0.4	1
155	A resonant method for determining the residual stress and elastic modulus of a thin film. Applied Physics Letters, 2013, 103, .	1.5	32
156	A Study of Mechanical Properties and Material Removal of Polycrystalline Tungsten via Nanoindentation and Nanoscratch. Advanced Materials Research, 2013, 797, 706-710.	0.3	0
157	Characterization of the interfacial strength of SiN _{<i>x</i>} /GaAs film/substrate systems using energy balance in nanoindentation. Journal of Materials Research, 2013, 28, 3137-3145.	1.2	11
158	Machining Characteristics of Multilayered Thin Film Solar Panels in Diamond Wire Sawing and Grinding. Advanced Materials Research, 2013, 797, 85-89.	0.3	0
159	Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate. Journal of Materials Research, 2013, 28, 1047-1055.	1.2	21
160	An experimental study of machining characteristics and tool wear in the diamond wire sawing of granite. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 943-953.	1.5	24
161	Nanoscratch characteristics and interfacial adhesion energy of SiN/GaAs film/substrate bilayer systems. International Journal of Surface Science and Engineering, 2013, 7, 382.	0.4	1
162	Mold Pattern Fabrication by Nanoscratching. International Journal of Automation Technology, 2013, 7, 686-693.	0.5	4

#	Article	IF	CITATIONS
163	A study on the diamond grinding of ultra-thin silicon wafers. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226, 66-75.	1.5	42
164	Characterisation of Interfacial Adhesion of Thin Film/Substrate Systems Using Indentation-Induced Delamination: A Focused Review. Key Engineering Materials, 2012, 533, 201-222.	0.4	9
165	A Grinding Protocol for the Fabrication of Micro/Meso Aspheric Moulds for Optic Applications. Advanced Materials Research, 2012, 565, 111-116.	0.3	0
166	Deformation and removal characteristics of LiTaO _{3 single crystals in nanoindentation and nanoscratch. International Journal of Abrasive Technology, 2012, 5, 258.}	0.2	1
167	A new phase in stoichiometric Cu6Sn5. Acta Materialia, 2012, 60, 6581-6591.	3.8	50
168	Deconvolution of mechanical properties of thin films from nanoindentation measurement via finite element optimization. Thin Solid Films, 2012, 526, 183-190.	0.8	14
169	Hardness of silicon nitride thin films characterised by nanoindentation and nanoscratch deconvolution methods. Materials Science and Technology, 2012, 28, 1172-1176.	0.8	3
170	Anisotropic mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5. Materials Letters, 2012, 86, 46-49.	1.3	67
171	Non-isothermal crystallization kinetics and mechanical properties of Al 86 Ni 6 Y 4.5 Co 2 La 1.5 metallic glass powder. Journal of Alloys and Compounds, 2012, 530, 127-131.	2.8	21
172	Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu. Journal of Alloys and Compounds, 2012, 536, 38-46.	2.8	56
173	A simple resonant method that can simultaneously measure elastic modulus and density of thin films. Surface and Coatings Technology, 2012, 209, 208-211.	2.2	18
174	Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon, 2012, 50, 2119-2125.	5.4	192
175	Lattice bending in monocrystalline GaAs induced by nanoscratching. Materials Letters, 2012, 80, 187-190.	1.3	16
176	Multi-scale deformation and material removal in amorphous Si thin film solar panels. International Journal of Nanomanufacturing, 2011, 7, 39.	0.3	8
177	A nanoscratch method for measuring hardness of thin films. International Journal of Nanomanufacturing, 2011, 7, 427.	0.3	0
178	Criterion to control self-propagation high temperature synthesis for porous Ti–Al intermetallics. Powder Metallurgy, 2011, 54, 404-407.	0.9	12
179	Synthesis of Mesoporous Carbonâ∈Bonded <scp>TiC/SiC</scp> Composites by Direct Carbothermal Reduction of Solâ∈"Gel Derived Monolithic Precursor. Journal of the American Ceramic Society, 2011, 94, 4025-4031.	1.9	18
180	A new tip area function for instrumented nanoindentation at extremely small contact depths. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7948-7951.	2.6	14

#	Article	IF	CITATIONS
181	Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits. Scripta Materialia, 2011, 64, 177-180.	2.6	33
182	Transmission electron microscopy characterization of the deformation of CdZnTe single crystals induced by nanoscratching. Scripta Materialia, 2011, 65, 392-395.	2.6	13
183	Nanogrinding of multi-layered thin film amorphous Si solar panels. International Journal of Machine Tools and Manufacture, 2011, 51, 797-805.	6.2	32
184	Deformation and material removal in a nanoscale multi-layer thin film solar panel using nanoscratch. International Journal of Machine Tools and Manufacture, 2011, 51, 182-189.	6.2	36
185	Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process. Journal of Crystal Growth, 2011, 316, 137-144.	0.7	12
186	An unexpected plasticization phenomenon and a constant of the change rate of viscoelastic properties for polymers during nanoindentation test. Journal of Applied Polymer Science, 2011, 122, 885-890.	1.3	9
187	The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials, 2011, 32, 4670-4681.	5.7	130
188	Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. International Journal of Machine Tools and Manufacture, 2011, 51, 18-24.	6.2	79
189	Crystalline structures and misfit strain inside Er silicide nanocrystals self-assembled on Si(001) substrates. Nanotechnology, 2011, 22, 245707.	1.3	6
190	Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD. Nanotechnology, 2011, 22, 405704.	1.3	22
191	Polishing Using Flexible Abrasive Tools and Loose Abrasives. , 2011, , 345-384.		3
192	New deformation mechanism of soft-brittle CdZnTe single crystals under nanogrinding. Scripta Materialia, 2010, 63, 621-624.	2.6	22
193	Nanoscratch-induced phase transformation of monocrystalline Si. Scripta Materialia, 2010, 63, 847-850.	2.6	86
194	Microstructures and mechanical properties of Ce1 \hat{a} °xCaxO2 \hat{a} °y (x=0.05, 0.1, 0.2) with different sintering temperatures. Journal of the European Ceramic Society, 2010, 30, 669-675.	2.8	12
195	Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. International Journal of Machine Tools and Manufacture, 2010, 50, 480-486.	6.2	164
196	Temperature influence on sintering with concurrent crystallization behavior in Ti-based metallic glassy powders. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2662-2668.	2.6	20
197	An investigation of the onset of elastoplastic deformation during nanoindentation in MgO single crystal (001) and (110) planes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4177-4184.	2.6	24
198	Effect of cooling rate on microstructure and deformation behavior of Ti-based metallic glassy/crystalline powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5750-5754.	2.6	10

#	Article	IF	CITATIONS
199	Nanomechanics of Mg–Al intermetallic compounds. Surface and Coatings Technology, 2010, 204, 2118-2122.	2.2	54
200	Surface characteristics and removal mechanism of cemented tungsten carbides in nanoscratching. Wear, 2010, 268, 1400-1408.	1.5	32
201	Hardness in arthropod exoskeletons in the absence of transition metals. Acta Biomaterialia, 2010, 6, 3152-3156.	4.1	45
202	Formation and Mechanical Properties of Intermetallic Compounds in Sn-Cu High-Temperature Lead-Free Solder Joints. Materials Science Forum, 2010, 654-656, 2450-2454.	0.3	13
203	Nanoindentation Characterization of Intermetallics Formed at the Lead-Free Solder/Cu Substrate Interface. Materials Science Forum, 2010, 654-656, 2446-2449.	0.3	0
204	Mold Fabricated by Nanoscratching for Nanoimprint Lithography. Advanced Materials Research, 2010, 126-128, 843-848.	0.3	0
205	Removal and Fracture Characteristics of Cemented Tungsten Carbide under Nanoindenting and Nanoscratching. Key Engineering Materials, 2010, 447-448, 16-20.	0.4	2
206	Enhancement of Photocatalytic Reaction of Titanium Dioxide Film by Surface Texturing. Materials Science Forum, 2010, 654-656, 1784-1787.	0.3	4
207	Machined Surface Characteristics and Removal Mechanism of Soft and Brittle Solids. Key Engineering Materials, 2010, 447-448, 183-187.	0.4	1
208	Influence of casting temperature on microstructures and mechanical properties of Cu ₅₀ Zr _{45.5} Ti _{2.5} Y ₂ metallic glass prepared using copper mold casting. Journal of Materials Research, 2009, 24, 3108-3115.	1.2	15
209	Nanoscratch-induced deformation of single crystal silicon. Journal of Vacuum Science & Technology B, 2009, 27, 1374-1377.	1.3	48
210	Deformation and Acoustic Emission during Nanoindentation on Single Crystal MgO (001) Plane. Advanced Materials Research, 2009, 76-78, 404-409.	0.3	1
211	Effect of Microstructure on Mechanical Properties and Wear Characteristics of Cemented Tungsten Carbides. Advanced Materials Research, 2009, 76-78, 609-612.	0.3	2
212	Effects of Horizontal Vibration Assistance on Surface Roughness in Magnetic Abrasive Finishing. Advanced Materials Research, 2009, 76-78, 246-251.	0.3	3
213	Structure, composition and properties of naturally occurring non-calcified crustacean cuticle. Arthropod Structure and Development, 2009, 38, 173-178.	0.8	47
214	Structure and Fieldâ€Emission Properties of Subâ€Micrometerâ€Sized Tungstenâ€Whisker Arrays Fabricated by Vapor Deposition. Advanced Materials, 2009, 21, 2387-2392.	11.1	77
215	Twoâ€probe electrical measurements in transmission electron microscopes—Behavioral control of tungsten microwires. Microscopy Research and Technique, 2009, 72, 93-100.	1.2	18
216	Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 193-198.	2.6	56

#	Article	IF	CITATIONS
217	Nanoindentation characterization of intermetallic compounds formed between Sn–Cu (–Ni) ball grid arrays and Cu substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 44-50.	1.7	38
218	Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe–Ni, and Co–Ni doped tungsten oxide. Journal of Alloys and Compounds, 2009, 482, 61-66.	2.8	7
219	Nanostructural Characteristics and Mechanical Properties of Low Temperature Plasma Enhanced Chemical Vapor Deposited Silicon Nitride Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 3734-3741.	0.9	6
220	Unique zinc mass in mandibles separates drywood termites from other groups of termites. Die Naturwissenschaften, 2008, 95, 433-441.	0.6	44
221	Brittle materials in nano-abrasive fabrication of optical mirror-surfaces. Precision Engineering, 2008, 32, 336-341.	1.8	45
222	Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320, 1106-1111.	1.0	283
223	An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia. International Journal of Machine Tools and Manufacture, 2008, 48, 1562-1568.	6.2	51
224	Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 373-379.	2.6	79
225	Catalytic growth of metallic tungsten whiskers based on the vapor–solid–solid mechanism. Nanotechnology, 2008, 19, 345604.	1.3	18
226	Coolant effect on grinding performance in high-speed deep grinding of 40Cr Steel. Metal Finishing, 2008, 106, 16-21.	0.1	3
227	Mechanical properties and fracture characteristics of cemented tungsten carbide with fine microstructure studied by nanoindentation. International Journal of Surface Science and Engineering, 2008, 2, 29.	0.4	14
228	Deformation of Monocrystalline Silicon under Nanoscratching. Advanced Materials Research, 2008, 41-42, 15-19.	0.3	2
229	Subsurface Structures of Monocrystalline Silicon Generated by Nanogrinding. Key Engineering Materials, 2008, 389-390, 465-468.	0.4	0
230	Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding. Nanotechnology, 2007, 18, 465705.	1.3	39
231	Ultrasonic vibration-assisted femtosecond laser machining of microholes. Journal of Micromechanics and Microengineering, 2007, 17, N58-N61.	1.5	56
232	Effects of ELID on High Speed Grinding of Partially Stabilized Zirconia. Key Engineering Materials, 2007, 329, 131-136.	0.4	2
233	A Study on Deformation and Removal Mechanisms of Tungsten Carbide Using Nanoindentation. Key Engineering Materials, 2007, 329, 385-390.	0.4	8
234	Mechanical characteristics of filter structures for MEMS adaptive infrared detectors. , 2007, , .		0

#	Article	IF	CITATIONS
235	Nanometric grinding of axisymmetric aspherical mould inserts for optic/photonic applications. International Journal of Machining and Machinability of Materials, 2007, 2, 71.	0.1	6
236	Surface topography in mechanical polishing of 6H-SiC (0001) substrate. Proceedings of SPIE, 2007, , .	0.8	0
237	Grinding characteristics of engineering ceramics in high speed regime. International Journal of Abrasive Technology, 2007, $1,78$.	0.2	19
238	Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts. International Journal of Machine Tools and Manufacture, 2007, 47, 2237-2245.	6.2	64
239	Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. Journal Physics D: Applied Physics, 2007, 40, 5383-5387.	1.3	318
240	Insect mandiblesâ€"comparative mechanical properties and links with metal incorporation. Die Naturwissenschaften, 2007, 95, 17-23.	0.6	99
241	Microwave absorption properties of the carbon-coated nickel nanocapsules. Applied Physics Letters, 2006, 89, 053115.	1.5	649
242	An experimental investigation of fabrication mechanisms of optic fibre end faces using nano/microindentation and nanogrinding. International Journal of Nanomanufacturing, 2006, 1 , 47.	0.3	2
243	Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2006, 435-436, 453-459.	2.6	161
244	Use of wheel speed as a parameter to inhibit surface crack generation in the grinding of wear-resistant fillers. International Journal of Advanced Manufacturing Technology, 2006, 28, 701-706.	1.5	2
245	Structural Materials for NEMS/MEMS Devices. , 2006, , .		0
246	CHARACTERISTICS OF LOW TEMPERATURE PECVD SILICON NITRIDE FOR MEMS STRUCTURAL MATERIALS. International Journal of Modern Physics B, 2006, 20, 3799-3804.	1.0	4
247	Determination of mechanical properties of silicon nitride thin films using nanoindentation. , 2005, 5798, 216.		12
248	Loose abrasive truing and dressing of resin bond diamond cup wheels for grinding fibre optic connectors. Journal of Materials Processing Technology, 2005, 159, 229-239.	3.1	22
249	Machining of micro aspherical mould inserts. Precision Engineering, 2005, 29, 315-323.	1.8	99
250	High speed versus conventional grinding in high removal rate machining of alumina and alumina–titania. International Journal of Machine Tools and Manufacture, 2005, 45, 897-907.	6.2	68
251	Highly integrated and automated high-speed grinding system for printer heads constructed by combination materials. International Journal of Advanced Manufacturing Technology, 2005, 25, 1-9.	1.5	9
252	Influences of nanoscale abrasive suspensions on the polishing of fiber-optic connectors. International Journal of Advanced Manufacturing Technology, 2005, 25, 685-690.	1.5	12

#	Article	IF	Citations
253	Planar nanogrinding of a fine grained WC-Co composite for an optical surface finish. International Journal of Advanced Manufacturing Technology, 2005, 26, 766-773.	1.5	18
254	Experimental investigations of the machinability of Ni50.6Ti49.4 alloy. Smart Materials and Structures, 2005, 14, S297-S301.	1.8	22
255	Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry–Pérot optical filters. Journal of Micromechanics and Microengineering, 2005, 15, 608-614.	1.5	71
256	Effect of Micrestructure on Material Removal Mechanisms in Nano/Micro Grinding of Tungsten Carbide Mould Inserts (M^4 processes and micro-manufacturing for science). Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2005, 2005.2, 877-882.	0.0	0
257	Abrasive Flow Polishing of Micro Bores. Materials and Manufacturing Processes, 2004, 19, 187-207.	2.7	50
258	Ceramic Response to High Speed Grinding. Machining Science and Technology, 2004, 8, 21-37.	1.4	71
259	Grindability of glass-inlaid zirconia for fibre-optic connectors. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218, 1861-1868.	1.5	5
260	Ultraprecision grinding of tungsten carbide for spherical mirrors. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218, 419-429.	1.5	19
261	Ultraprecision Abrasive Machining of Fibre Optic Connectors. Key Engineering Materials, 2004, 257-258, 171-176.	0.4	2
262	Evaluation of elastic modulus and hardness of thin films by nanoindentation. Journal of Materials Research, 2004, 19, 3076-3080.	1.2	208
263	A Novel Form Error Compensation Technique for Tungsten Carbide Mould Insert Machining Utilizing Parallel Grinding Technology. Key Engineering Materials, 2004, 257-258, 141-146.	0.4	11
264	Microgrinding of deep micro grooves with high table reversal speed. International Journal of Machine Tools and Manufacture, 2004, 44, 39-49.	6.2	15
265	Influence of microstructure on ultraprecision grinding of cemented carbides. International Journal of Machine Tools and Manufacture, 2004, 44, 533-543.	6.2	89
266	Polishing of fiber optic connectors. International Journal of Machine Tools and Manufacture, 2004, 44, 659-668.	6.2	22
267	Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining. International Journal of Machine Tools and Manufacture, 2004, 44, 607-615.	6.2	82
268	Micro/meso ultra precision grinding of fibre optic connectors. Precision Engineering, 2004, 28, 95-105.	1.8	23
269	High-quality grinding of polycrystalline silicon carbide spherical surfaces. Wear, 2004, 256, 197-207.	1.5	75
270	Analytical and experimental investigation of coolant velocity in high speed grinding. International Journal of Machine Tools and Manufacture, 2004, 44, 1069-1076.	6.2	56

#	Article	lF	Citations
271	Femtosecond laser machining characteristics of Nitinol. Applied Surface Science, 2004, 228, 201-206.	3.1	64
272	Surface Waviness Controlled Grinding of Thin Mold Inserts Using Chilled Air as Coolant. Materials and Manufacturing Processes, 2004, 19, 341-354.	2.7	3
273	A Study of High-Speed Milling Characteristics of Nitinol. Materials and Manufacturing Processes, 2004, 19, 159-175.	2.7	25
274	SMART Robotic System for 3D Profile Turbine Vane Airfoil Repair. International Journal of Advanced Manufacturing Technology, 2003, 21, 275-283.	1.5	107
275	Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 345, 155-163.	2.6	82
276	High speed grinding of silicon nitride with resin bond diamond wheels. Journal of Materials Processing Technology, 2003, 141, 329-336.	3.1	95
277	Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. Journal of Materials Processing Technology, 2003, 140, 303-307.	3.1	163
278	Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels. Journal of Materials Processing Technology, 2003, 140, 217-223.	3.1	20
279	Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. International Journal of Machine Tools and Manufacture, 2003, 43, 811-823.	6.2	202
280	Studies of Femtosecond Laser-Processed Nitinol. Materials Science Forum, 2003, 437-438, 277-280.	0.3	16
281	Ecological grinding with chilled air as coolant. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217, 409-419.	1.5	20
282	Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol. Journal of Micromechanics and Microengineering, 2003, 13, 693-700.	1.5	99
283	High-Precision Low-Damage Grinding of Polycrystalline SiC. Key Engineering Materials, 2003, 238-239, 59-64.	0.4	8
284	High Speed Grinding Performance and Material Removal Mechanism of Silicon Nitride., 2002,, 416-420.		6
285	Fabrication of symmetrical section microfeatures using the electro-discharge machining block electrode method. Journal of Micromechanics and Microengineering, 2002, 12, 905-910.	1.5	22
286	An Automated Robotic System for Jet Engine Overhaul. System Design and Development for Honeycomb Repair. International Journal of Advanced Manufacturing Technology, 2002, 19, 370-376.	1.5	11
287	Robotic grinding and polishing for turbine-vane overhaul. Journal of Materials Processing Technology, 2002, 127, 140-145.	3.1	141
288	PROCESS DEVELOPMENT AND APPROACH FOR 3D PROFILE GRINDING/POLISHING., 2002, , 19-54.		3

#	Article	IF	Citations
289	ADAPTIVE ROBOTIC SYSTEM FOR 3D PROFILE GRINDING/POLISHING. , 2002, , 55-90.		2
290	Effects of truing/dressing intensity on truing/dressing efficiency and grinding performance of vitrified diamond wheels. Journal of Materials Processing Technology, 2001, 117, 9-14.	3.1	22
291	Automated Robotic System for Jet Engine Overhaul. Process Development and Enhancement for Honeycomb Repair Journal of the Japan Society for Precision Engineering, 2000, 66, 1895-1900.	0.0	2
292	The sound-field characterisation of a power transformer. Applied Acoustics, 1999, 56, 257-272.	1.7	20
293	An investigation of the effect of powder on the impact characteristics between a ball and a plate using free falling experiments. Materials Science & Droperties, Microstructure and Processing, 1998, 241, 38-47.	2.6	42
294	A Numerical Study of Effect of Grain Boundaries on Elastic and Plastic Properties in Nanocomposite Materials. Key Engineering Materials, 1997, 127-131, 1191-1198.	0.4	4
295	Effect of milling conditions on the synthesis of chromium carbides by mechanical alloying. Journal of Alloys and Compounds, 1997, 256, 258-262.	2.8	30
296	On the dynamics of mechanical milling in a vibratory mill. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 232, 55-62.	2.6	14
297	Finite element analysis of mechanical properties in discontinuously reinforced metal matrix composites with ultrafine micro structure. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 232, 63-72.	2.6	31
298	Prediction of impact forces in a vibratory ball mill using an inverse technique. International Journal of Impact Engineering, 1997, 19, 117-126.	2.4	18
299	Microstructural evolution of 304 stainless steel during mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 216, 178-184.	2.6	45
300	Weibull strength distributions and fracture characteristics of abrasive materials. Engineering Fracture Mechanics, 1995, 52, 15-24.	2.0	17
301	An experimental investigation of the strengths of individual brown corundum abrasive grains. Scripta Metallurgica Et Materialia, 1993, 29, 299-304.	1.0	8
302	Optimal profile generation in distorted surface finishing. , 0, , .		12
303	Mechanical Design and Finite Element Analysis of Tunable Fabry-Perot MEMS Structures for Adaptive Infrared Detectors. , 0, , .		1
304	Nanomechanical Properties and Nanostructure of CMG and CMP Machined Si Substrates. Key Engineering Materials, 0, 381-382, 525-528.	0.4	2
305	Determination of Elastic Modulus of Thin Coating Materials Using Nanoindentation and Finite Element Analysis. Advanced Materials Research, 0, 76-78, 392-397.	0.3	4
306	High Speed Grinding of Advanced Ceramics: A Review. Key Engineering Materials, 0, 404, 11-22.	0.4	12

#	Article	IF	Citations
307	Grinding and Polishing of Nanolayered Structures: Thin Film Amorphous Silicon Solar Panels. Advanced Materials Research, 0, 126-128, 817-822.	0.3	1
308	A Study of Mechanical Properties of Human Femoral Heads Using Nanoindentation. Advanced Materials Research, 0, 126-128, 957-962.	0.3	2
309	Molecular Dynamics Simulation of Rubbing Phenomena in Ultra-Precision Abrasive Machining. Key Engineering Materials, 0, 443, 417-422.	0.4	0
310	Deformation Mechanisms and Abrasive Machining of Nanoscale Thin Film Multilayered Solar Panels: A Focused Review. Advanced Materials Research, 0, 325, 42-47.	0.3	3
311	Mechanical Properties and Deformation of LiTaO ₃ Single Crystals Characterised by Nanoindentation and Nanoscratch. Advanced Materials Research, 0, 565, 564-569.	0.3	5
312	Interfacial Failureof SiN/GaAs Film/Substrate BilayersInduced by Nanoscratch. Advanced Materials Research, 0, 652-654, 1856-1861.	0.3	2
313	Linear Rock Cutting with SMART*CUT Picks. Applied Mechanics and Materials, 0, 477-478, 1378-1384.	0.2	2
314	Laboratory Comparison of SMART*CUT Picks With WC Picks. Advanced Materials Research, 0, 1017, 323-328.	0.3	5
315	Design and Structural Analysis of Robot Arm for High Performance Packaging Robots. Applied Mechanics and Materials, 0, 741, 669-674.	0.2	1
316	A Novel Strategy to Additively Manufacture 7075 Aluminium Alloy With Selective Laser Melting. SSRN Electronic Journal, 0, , .	0.4	0
317	Laser Cladding of Hard TiO _x N _y /Ti Composite Coating on Ti Alloy. SSRN Electronic Journal, 0, , .	0.4	0
318	Young's Modulus and Thermal Stability of Individual Sb ₂ O ₃ Nanowires at Elevated Temperatures. Physica Status Solidi - Rapid Research Letters, 0, , 2200039.	1.2	2
319	The shearing behavior of nanowire contact pairs in air and the role of humidity. Physica Status Solidi - Rapid Research Letters, 0, , .	1.2	1