Grant E Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785515/publications.pdf

Version: 2024-02-01

136885 175177 2,936 71 32 52 citations h-index g-index papers 75 75 75 2163 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functionalization of Electrodes with Tunable [EMIM] _{<i>x</i>+1} ^{â€"} Ionic Liquid Clusters for Electrochemical Separations. Chemistry of Materials, 2022, 34, 2612-2623.	3.2	5
2	Tuning the Charge and Hydrophobicity of Graphene Oxide Membranes by Functionalization with Ionic Liquids at Epoxide Sites. ACS Applied Materials & Interfaces, 2022, 14, 19031-19042.	4.0	6
3	ESI-MS Identification of the Cationic Phosphine-Ligated Gold Clusters Au _{1–22} : Insight into the Gold–Ligand Ratio and Abundance of Larger Clusters. Journal of the American Society for Mass Spectrometry, 2021, 32, 237-246.	1.2	12
4	Ion Mobility Spectrometry Characterization of the Intermediate Hydrogen-Containing Gold Cluster Au ₇ (PPh ₃) ₇ H ₅ ²⁺ . Journal of Physical Chemistry Letters, 2021, 12, 2502-2508.	2.1	11
5	Graphene Oxide as a Pb(II) Separation Medium: Has Part of the Story Been Overlooked?. Jacs Au, 2021, 1, 766-776.	3.6	9
6	Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from <i>Ab Initio</i> Molecular Dynamics Simulations. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38816-38825.	4.0	20
7	Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li–S Batteries. Journal of Physical Chemistry Letters, 2021, 12, 9360-9367.	2.1	13
8	Structure and Stability of the Ionic Liquid Clusters [EMIM] _{<i>n</i>} [BF ₄] _{<i>n</i>+1} [–] (<i>n</i> = 1–9): Implications for Electrochemical Separations. Journal of Physical Chemistry Letters, 2020, 11, 6844-6851.	2.1	12
9	Direct functionalization of Câ^'H bonds by electrophilic anions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23374-23379.	3.3	21
10	Mapping Localized Peroxyl Radical Generation on a PEM Fuel Cell Catalyst Using Integrated Scanning Electrochemical Cell Microspectroscopy. Frontiers in Chemistry, 2020, 8, 572563.	1.8	5
11	Light Exposure Promotes Degradation of Intermediates and Growth of Phosphine-Ligated Gold Clusters. Journal of Physical Chemistry C, 2020, 124, 3396-3402.	1.5	18
12	Simplified Ab Initio Molecular Dynamics-Based Raman Spectral Simulations. Applied Spectroscopy, 2020, 74, 1350-1357.	1.2	7
13	Influence of Interligand Interactions and Core-Charge Distribution on Gold Cluster Stability: Enthalpy Versus Entropy. Journal of Physical Chemistry C, 2019, 123, 24899-24911.	1.5	13
14	Properties of perhalogenated ${\langle i \rangle closo \langle i \rangle -B \langle sub \rangle 10 \langle sub \rangle}$ and ${\langle i \rangle closo \langle i \rangle -B \langle sub \rangle 11 \langle sub \rangle}$ multiply charged anions and a critical comparison with ${\langle i \rangle closo \langle i \rangle -B \langle sub \rangle 12 \langle sub \rangle}$ in the gas and the condensed phase. Physical Chemistry Chemical Physics, 2019, 21, 5903-5915.	1.3	24
15	Controlling the Activity and Stability of Electrochemical Interfaces Using Atom-by-Atom Metal Substitution of Redox Species. ACS Nano, 2019, 13, 458-466.	7.3	29
16	Role of sterics in phosphine-ligated gold clusters. Physical Chemistry Chemical Physics, 2019, 21, 1689-1699.	1.3	17
17	Self-organizing layers from complex molecular anions. Nature Communications, 2018, 9, 1889.	5.8	43
18	Von isolierten Ionen zu mehrschichtigen funktionellen Materialien durch sanfte Landung von Ionen. Angewandte Chemie, 2018, 130, 16506-16521.	1.6	10

#	Article	IF	Citations
19	DRILL Interface Makes Ion Soft Landing Broadly Accessible for Energy Science and Applications. Batteries and Supercaps, 2018, 1, 97-101.	2.4	13
20	In Situ Infrared Spectroelectrochemistry for Understanding Structural Transformations of Precisely Defined Ions at Electrochemical Interfaces. Analytical Chemistry, 2018, 90, 10935-10942.	3.2	25
21	From Isolated Ions to Multilayer Functional Materials Using Ion Soft Landing. Angewandte Chemie - International Edition, 2018, 57, 16270-16284.	7.2	7 5
22	Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19, 17187-17198.	1.3	21
23	Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry. Chemical Communications, 2017, 53, 7389-7392.	2.2	31
24	Soft―and reactive landing of ions onto surfaces: Concepts and applications. Mass Spectrometry Reviews, 2016, 35, 439-479.	2.8	67
25	Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing. Journal of Chemical Physics, 2016, 145, 174701.	1.2	14
26	Soft Landing of Complex Ions for Studies in Catalysis and Energy Storage. Journal of Physical Chemistry C, 2016, 120, 23305-23322.	1.5	31
27	In situ solid-state electrochemistry of mass-selected ions at well-defined electrode–electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13324-13329.	3.3	23
28	Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing. Nature Communications, 2016, 7, 11399.	5.8	86
29	Understanding ligand effects in gold clusters using mass spectrometry. Analyst, The, 2016, 141, 3573-3589.	1.7	47
30	Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers. Physical Chemistry Chemical Physics, 2016, 18, 9021-9028.	1.3	15
31	Soft landing of bare nanoparticles with controlled size, composition, and morphology. Nanoscale, 2015, 7, 3491-3503.	2.8	65
32	Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen. Nanoscale, 2015, 7, 12379-12391.	2.8	32
33	Cationic gold clusters ligated with differently substituted phosphines: effect of substitution on ligand reactivity and binding. Physical Chemistry Chemical Physics, 2015, 17, 14636-14646.	1.3	25
34	Gas-Phase Fragmentation Pathways of Mixed Addenda Keggin Anions: PMo12-nWnO40 3– (n = 0–12). Journal of the American Society for Mass Spectrometry, 2015, 26, 1027-1035.	1.2	12
35	Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst, The, 2015, 140, 2957-2963.	1.7	44
36	Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions. Faraday Discussions, 2015, 184, 339-357.	1.6	15

#	Article	IF	CITATIONS
37	Soft landing of mass-selected gold clusters: Influence of ion and ligand on charge retention and reactivity. International Journal of Mass Spectrometry, 2015, 377, 205-213.	0.7	10
38	Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions. Chemical Science, 2014, 5, 3275.	3.7	34
39	Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass-Selected lons. Journal of Physical Chemistry C, 2014, 118, 27611-27622.	1.5	32
40	Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry. Journal of Physical Chemistry A, 2014, 118, 8464-8470.	1.1	14
41	Tribute to A. W. Castleman, Jr Journal of Physical Chemistry A, 2014, 118, 8011-8013.	1.1	0
42	In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected lons. Journal of Visualized Experiments, 2014, , .	0.2	2
43	Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation. Journal of the American Society for Mass Spectrometry, 2013, 24, 1385-1395.	1.2	13
44	Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 50820.	0.9	227
45	Influence of heteroanion and ammonium cation size on the composition and gas-phase fragmentation of polyoxovanadates. International Journal of Mass Spectrometry, 2013, 354-355, 333-341.	0.7	9
46	Synthesis and Characterization of Gold Clusters Ligated with 1,3â€Bis(dicyclohexylphosphino)propane. ChemPlusChem, 2013, 78, 1033-1039.	1.3	14
47	Coverage-Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-Selected Ions. Journal of Physical Chemistry C, 2012, 116, 24977-24986.	1.5	42
48	Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions. ACS Nano, 2012, 6, 573-582.	7.3	59
49	Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing. Physical Chemistry Chemical Physics, 2011, 13, 267-275.	1.3	34
50	Monodisperse Au \cdot sub \cdot 11 \cdot /sub \cdot Clusters Prepared by Soft Landing of Mass Selected Ions. Analytical Chemistry, 2011, 83, 8069-8072.	3.2	49
51	Soft Landing of Complex Molecules on Surfaces. Annual Review of Analytical Chemistry, 2011, 4, 83-104.	2.8	98
52	lonCCDâ,,¢ for Direct Position-Sensitive Charged-Particle Detection: from Electrons and keV lons to Hyperthermal Biomolecular lons. Journal of the American Society for Mass Spectrometry, 2011, 22, 612-623.	1.2	36
53	Characterization of the Ion Beam Focusing in a Mass Spectrometer Using an IonCCDâ,,¢ Detector. Journal of the American Society for Mass Spectrometry, 2011, 22, 1388-1394.	1.2	14
54	Preparation of Surface Organometallic Catalysts by Gasâ€Phase Ligand Stripping and Reactive Landing of Massâ€Selected Ions. Chemistry - A European Journal, 2010, 16, 14433-14438.	1.7	35

#	Article	IF	Citations
55	Generation of Oxygen Radical Centers in Binary Neutral Metal Oxide Clusters for Catalytic Oxidation Reactions. Angewandte Chemie - International Edition, 2010, 49, 407-410.	7.2	68
56	Reactivity Trends in the Oxidation of CO by Anionic Transition Metal Oxide Clusters. Journal of Physical Chemistry C, 2010, 114, 5438-5446.	1.5	51
57	In Situ Reactivity and TOF-SIMS Analysis of Surfaces Prepared by Soft and Reactive Landing of Mass-Selected Ions. Analytical Chemistry, 2010, 82, 5718-5727.	3.2	39
58	The Reactivity of Gas-Phase Metal Oxide Clusters: Systems for Understanding the Mechanisms of Heterogeneous Catalysts. , 2010, , 293-317.		7
59	Clusters as model systems for investigating nanoscale oxidation catalysis. Chemical Physics Letters, 2009, 475, 1-9.	1.2	160
60	Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO. International Journal of Mass Spectrometry, 2009, 280, 93-100.	0.7	23
61	Influence of Charge State on Catalytic Oxidation Reactions at Metal Oxide Clusters Containing Radical Oxygen Centers. Journal of the American Chemical Society, 2009, 131, 5460-5470.	6.6	135
62	Cluster reactivity experiments: Employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18108-18113.	3.3	116
63	Influence of Charge State on the Mechanism of CO Oxidation on Gold Clusters. Journal of the American Chemical Society, 2008, 130, 1694-1698.	6.6	147
64	Influence of Stoichiometry and Charge State on the Structure and Reactivity of Cobalt Oxide Clusters with CO. Journal of Physical Chemistry A, 2008, 112, 11330-11340.	1.1	55
65	Oxidation of CO by Aluminum Oxide Cluster Ions in the Gas Phase. Journal of Physical Chemistry A, 2008, 112, 4732-4735.	1.1	51
66	Gas-Phase Reactivity of Gold Oxide Cluster Cations with CO. Journal of Physical Chemistry C, 2008, 112, 9730-9736.	1.5	51
67	Stoichiometric Zirconium Oxide Cations as Potential Building Blocks for Cluster Assembled Catalysts. Journal of the American Chemical Society, 2008, 130, 13912-13920.	6.6	120
68	Experimental and Theoretical Study of the Structure and Reactivity of Fe1-20â‰ g - Clusters with CO. Journal of Physical Chemistry A, 2007, 111, 4158-4166.	1.1	69
69	Experimental and Theoretical Study of the Structure and Reactivity of Fe <i>_m</i> O <i>_n</i> Journal of Physical Chemistry C, 2007, 111, 19086-19097.	1.5	81
70	Influence of charge state on the reaction of FeO3+/- with carbon monoxide. Chemical Physics Letters, 2007, 435, 295-300.	1.2	45
71	Joint experimental and theoretical investigations of the reactivity of Au2OnⰠand Au3OnⰠ(n=1–5) with carbon monoxide. Journal of Chemical Physics, 2006, 125, 204311.	1.2	53