Ming-Chien Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785458/publications.pdf

Version: 2024-02-01

71102 85541 5,688 119 41 71 citations h-index g-index papers 119 119 119 7558 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biotinâ€decorated redoxâ€responsive micelles from diselenideâ€linked starâ€shaped copolymers for the targeted delivery and controlled release of doxorubicin in cancer cells. Journal of Applied Polymer Science, 2022, 139, .	2.6	4
2	Novel strategy for flexible and super-hydrophobic SERS substrate fabricated by deposited gold nanoislands on organic semiconductor nanostructures for bio-detection. Surface and Coatings Technology, 2022, 435, 128251.	4.8	8
3	Replica of Bionic Nepenthes Peristome-like and Anti-Fouling Structures for Self-Driving Water and Raman-Enhancing Detection. Polymers, 2022, 14, 2465.	4.5	3
4	Reduced graphene oxide nanosheets decorated with core-shell of Fe3O4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121578.	3.9	12
5	Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111957.	5.0	11
6	Thermo-reversible injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110606.	5.0	28
7	A Novel Approach to Increase the Oxygen Permeability of Soft Contact Lenses by Incorporating Silica Sol. Polymers, 2020, 12, 2087.	4.5	13
8	Endothelial cell growth on polyurethane modified with acrylic acid and REDV peptide. Surface Innovations, 2020, 8, 89-104.	2.3	10
9	Anti-fouling and anti-coagulation capabilities of PEDOT-biopolymer coating by in-situ electrochemical copolymerization. Surface and Coatings Technology, 2020, 397, 125963.	4.8	6
10	The Ophthalmic Performance of Hydrogel Contact Lenses Loaded with Silicone Nanoparticles. Polymers, 2020, 12, 1128.	4.5	13
11	Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene. Polymers, 2020, 12, 1321.	4.5	10
12	Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone. Applied Surface Science, 2020, 521, 146372.	6.1	25
13	Magnetic Graphene-Based Sheets for Bacteria Capture and Destruction Using a High-Frequency Magnetic Field. Nanomaterials, 2020, 10, 674.	4.1	11
14	Preparation of Amphiphilic Chitosan–Graphene Oxide–Cellulose Nanocrystalline Composite Hydrogels and Their Biocompatibility and Antibacterial Properties. Applied Sciences (Switzerland), 2019, 9, 3051.	2.5	19
15	Mesoporous Silica Nanospheres Decorated by Ag–Nanoparticle Arrays with 5 nm Interparticle Gap Exhibit Insignificant Hot-Spot Raman Enhancing Effect. Journal of Physical Chemistry C, 2019, 123, 18528-18535.	3.1	8
16	Electrochemical Polymerization of PEDOT–Graphene Oxide–Heparin Composite Coating for Anti-fouling and Anti-clotting of Cardiovascular Stents. Polymers, 2019, 11, 1520.	4.5	22
17	Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. Polymers, 2019, 11, 944.	4.5	55
18	Synthesis and characterization of soft contact lens based on the combination of silicone nanoparticles with hydrophobic and hydrophilic monomers. Journal of Polymer Research, 2019, 26, 1.	2.4	11

#	Article	IF	Citations
19	Characterizations of doxorubicin-loaded PEGylated magnetic liposomes for cancer cells therapy. Journal of Polymer Research, 2019, 26, 1.	2.4	9
20	Effect of soft segment content of Pebax \hat{A}^{\otimes} Rnew on the properties of Nylon-6/SMA/PEBA blends. Journal of Polymer Research, 2019, 26, 1.	2.4	5
21	Hemocompatibility and anti-fouling behavior of multilayer biopolymers immobilized on gold-thiolized drug-eluting cardiovascular stents. Colloids and Surfaces B: Biointerfaces, 2019, 173, 470-477.	5.0	20
22	Effect of immobilization of poly(\hat{l}^3 -glutamic acid) on the biocompatibility of electrospun poly (L-lactide) mats. Journal of Polymer Research, 2018, 25, 1.	2.4	4
23	Effect of poly(styrene-co-maleic anhydride) on physical properties and crystalline behavior of nylon-6/PEBA blends. Journal of Polymer Research, 2017, 24, 1.	2.4	9
24	Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release. Nanoscale Research Letters, 2017, 12, 355.	5.7	60
25	Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterials Science, 2017, 5, 22-37.	5.4	130
26	Effect of grafting of poly(styrenesulfonate) onto Nafion membrane on the performance of vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2017, 807, 88-96.	3.8	12
27	Evaluation of hydrogel composing of Pluronic F127 and carboxymethyl hexanoyl chitosan as injectable scaffold for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2016, 146, 204-211.	5.0	45
28	Crystallization behavior and tensile property of poly(trimethyleneterephthalate)/styrene-ethylene-buthylene-styrene composites. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 474-480.	1.0	1
29	Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2016, 140, 567-573.	5.0	35
30	Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites. Bio-Medical Materials and Engineering, 2015, 26, S147-S154.	0.6	8
31	Core-Shell Structure of Gold Nanoparticles with Inositol Hexaphosphate Nanohybrids for Label-Free and Rapid Detection by SERS Nanotechnology. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	5
32	Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Research Letters, 2015, 10, 412.	5.7	23
33	Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique. Colloids and Surfaces B: Biointerfaces, 2015, 136, 735-743.	5.0	39
34	Improvement of cytocompatibility of polylactide by filling with marine algae powder. Materials Science and Engineering C, 2015, 50, 309-316.	7.3	10
35	Amino-silica modified Nafion membrane for vanadium redox flow battery. Journal of Power Sources, 2015, 282, 562-571.	7.8	103
36	Novel pH-sensitive drug carriers of carboxymethyl-hexanoyl chitosan (Chitosonic® Acid) modified liposomes. RSC Advances, 2015, 5, 23134-23143.	3.6	20

#	Article	IF	Citations
37	Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. Journal of Polymer Research, 2015, 22, 1.	2.4	37
38	Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Nanoscale Research Letters, 2015, 10, 397.	5.7	51
39	Prevention of surfactant wetting with agarose hydrogel layer for direct contact membrane distillation used in dyeing wastewater treatment. Journal of Membrane Science, 2015, 475, 511-520.	8.2	95
40	Preparation and characterization of nanocomposite of maleated poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 622	Td (adipate-c
41	Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and Surfaces B: Biointerfaces, 2014, 123, 986-994.	5.0	79
42	Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Research Letters, 2014, 9, 497.	5.7	78
43	Characterization, degradation and biocompatibility of PBAT based nanocomposites. Applied Clay Science, 2013, 80-81, 291-298.	5.2	80
44	Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Materials Letters, 2013, 93, 133-136.	2.6	99
45	Biocompatibility of organically modified nanocomposites based on PBAT. Journal of Polymer Research, 2013, 20, 1.	2.4	26
46	Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. European Polymer Journal, 2013, 49, 706-717.	5.4	61
47	Preparation of <i>O</i> â€diallylammonium chitosan with antibacterial activity and cytocompatibility. Polymer International, 2013, 62, 507-514.	3.1	2
48	Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	42
49	PBAT based nanocomposites for medical and industrial applications. Materials Science and Engineering C, 2012, 32, 1331-1351.	7.3	178
50	Fabrication and characterization of electrospun silk fibroin/TiO ₂ nanofibrous mats for wound dressings. Polymers for Advanced Technologies, 2012, 23, 1066-1076.	3.2	40
51	Effect of quaternized chitosan on the fusion efficiency and cytocompatibility of liposomes. Journal of Polymer Research, 2012, 19, 1.	2.4	2
52	Preparation of electrospun alginate fibers with chitosan sheath. Carbohydrate Polymers, 2012, 87, 2357-2361.	10.2	59
53	Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydrate Polymers, 2012, 88, 809-819.	10.2	100
54	Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydrate Polymers, 2012, 88, 1304-1312.	10.2	64

#	Article	IF	CITATIONS
55	Cellular fusion and whitening effect of a chitosan derivative coated liposome. Colloids and Surfaces B: Biointerfaces, 2012, 90, 169-176.	5.0	31
56	Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. Journal of Polymer Research, 2011, 18, 319-327.	2.4	46
57	Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) blending with Organoclay. Journal of Polymer Research, 2011, 18, 2151-2159.	2.4	45
58	The effect of covalent immobilization of sialic acid on the removal of lipopolysaccharide and reactive oxygen species for polyethylene terephthalate. Polymers for Advanced Technologies, 2011, 22, 1872-1878.	3.2	21
59	Layered hydrogel of poly(\hat{I}^3 -glutamic acid), sodium alginate, and chitosan: Fluorescence observation of structure and cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2011, 86, 409-413.	5.0	27
60	Effect of immobilization of polysaccharides on the biocompatibility of poly(butyleneadipateâ€∢i>co⟨/i>â€ŧerephthalate) films. Polymers for Advanced Technologies, 2010, 21, 543-553.	3.2	10
61	Swelling and biocompatibility of sodium alginate/poly(<i>î³</i> â€glutamic acid) hydrogels. Polymers for Advanced Technologies, 2010, 21, 561-567.	3.2	20
62	Preparation and characterization of biodegradable polycaprolactone/multiwalled carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2009, 112, 660-668.	2.6	48
63	Reduction of free radicals and endotoxin by conjugated linoleic acid loaded in anin situ-synthesized poly(N-isopropyl acrylamide) thin layer. Journal of Applied Polymer Science, 2009, 113, 3222-3227.	2.6	4
64	Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent. Polymers for Advanced Technologies, 2009, 20, 98-103.	3.2	53
65	Removal of lipopolysaccharide and reactive oxygen species using sialic acid immobilized polysulfone dialyzer. Polymers for Advanced Technologies, 2009, 20, 871-877.	3.2	5
66	Organic–inorganic hybrid membranes prepared from the sol–gel process of poly(butyleneadipateâ€ <i>co</i> â€ŧerephthalate) and TiO ₂ . Polymers for Advanced Technologies, 2009, 20, 672-679.	3.2	8
67	The controlled release behavior and pH―and thermoâ€sensitivity of alginate/poly(vinyl alcohol) blended hydrogels. Polymers for Advanced Technologies, 2009, 20, 680-688.	3.2	20
68	Effect of poly(<i>î³</i> â€glutamic acid) on the gelation of Pluronic F127. Polymers for Advanced Technologies, 2009, 20, 703-705.	3.2	5
69	Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS–polyurethane–HEMA hydrogel. Colloids and Surfaces B: Biointerfaces, 2009, 70, 132-141.	5.0	49
70	Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl) Tj ETQq0 (0 0 rgBT /0	Overlock 10 Tf
71	Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Colloids and Surfaces B: Biointerfaces, 2008, 61, 43-52.	5.0	32
72	<i>In vitro</i> biocompatibility of threeâ€dimensional chitosan scaffolds immobilized with chondroitinâ€6â€sulfate. Polymers for Advanced Technologies, 2008, 19, 377-384.	3.2	10

#	Article	IF	CITATIONS
73	Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. International Journal of Pharmaceutics, 2008, 346, 38-46.	5.2	101
74	Study on the Crystallization Kinetic and Characterization of Poly(lactic acid) and Poly(vinyl alcohol) Blends. Polymer-Plastics Technology and Engineering, 2008, 47, 1289-1296.	1.9	32
75	Core–Shell Magnetic Nanoparticles of Heparin Conjugate as Recycling Anticoagulants. Journal of Biomedical Nanotechnology, 2007, 3, 353-359.	1.1	20
76	Surface Modification of Poly(<scp>l</scp> -lactic acid) Membrane via Layer-by-Layer Assembly of Silver Nanoparticle-Embedded Polyelectrolyte Multilayer. Bioconjugate Chemistry, 2007, 18, 1521-1529.	3.6	101
77	Biocompatibility and antibacterial activity of chitosan and hyaluronic acid immobilized polyester fibers. Journal of Applied Polymer Science, 2007, 104, 220-225.	2.6	32
78	Construction of antithrombogenic polyelectrolyte multilayer on thermoplastic polyurethane via layer-by-layer self-assembly technique. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 105-113.	3.4	18
79	Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloids and Surfaces B: Biointerfaces, 2007, 54, 222-229.	5.0	55
80	Behaviors of controlled drug release of magnetic-gelatin hydrogel coated stainless steel for drug-eluting-stents application. Journal of Magnetism and Magnetic Materials, 2007, 310, 2874-2876.	2.3	20
81	The reduction of oxidative stress, anticoagulation of platelets, and inhibition of lipopolysaccharide by conjugated linoleic acid bonded on a polysulfone membrane. Polymers for Advanced Technologies, 2007, 18, 286-291.	3.2	13
82	Biofunctional properties of polyester fibers grafted with chitosan and collagen. Polymers for Advanced Technologies, 2007, 18, 235-239.	3.2	32
83	An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates. Materials Chemistry and Physics, 2007, 101, 93-98.	4.0	80
84	Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers. Separation and Purification Technology, 2007, 57, 209-219.	7.9	66
85	Hemocompatibility of Layer-by-Layer Hyaluronic Acid/Heparin Nanostructure Coating on Stainless Steel for Cardiovascular Stents and its Use for Drug Delivery. Journal of Nanoscience and Nanotechnology, 2006, 6, 3163-3170.	0.9	30
86	Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane. Polymers for Advanced Technologies, 2006, 17, 419-425.	3.2	13
87	Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polymers for Advanced Technologies, 2006, 17, 439-443.	3.2	79
88	In vitro evaluation of cellulose acetate hemodialyzer immobilized with heparin. Polymers for Advanced Technologies, 2006, 17, 453-462.	3.2	16
89	Blood compatibility of novel poly(\hat{l}^3 -glutamic acid)/polyvinyl alcohol hydrogels. Colloids and Surfaces B: Biointerfaces, 2006, 47, 43-49.	5.0	83
90	Effect of draw ratio and coagulant composition on polyacrylonitrile hollow fiber membranes. Separation and Purification Technology, 2006, 52, 380-387.	7.9	29

#	Article	IF	Citations
91	Cytocompatibility and Antibacterial Activity of a PHBV Membrane with Surface-Immobilized Water-Soluble Chitosan and Chondroitin-6-sulfate. Macromolecular Bioscience, 2006, 6, 348-357.	4.1	20
92	Miscibility, thermal characterization and crystallization of poly(I-lactide) and poly(tetramethylene) Tj ETQq0 0 0 r	gBJ_{Overl	ock 10 Tf 50
93	Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces, 2005, 44, 82-92.	5.0	72
94	pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces, 2005, 44, 143-151.	5.0	133
95	In-Vitro Hemocompatibility Evaluation of a Thermoplastic Polyurethane Membrane with Surface-Immobilized Water-Soluble Chitosan and Heparin. Macromolecular Bioscience, 2005, 5, 1013-1021.	4.1	73
96	Novel Silver/Poly(vinyl alcohol) Nanocomposites for Surface-Enhanced Raman Scattering-Active Substrates. Macromolecular Rapid Communications, 2005, 26, 1942-1947.	3.9	54
97	Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials, 2005, 26, 1437-1444.	11.4	91
98	Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polymers for Advanced Technologies, 2005, 16, 413-419.	3.2	91
99	Effect of coagulant temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes. Polymers for Advanced Technologies, 2005, 16, 524-532.	3.2	26
100	The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polymers for Advanced Technologies, 2005, 16, 600-607.	3.2	318
101	Effect of immobilization with chondroitin-6-sulfate and grafting with chitosan on fibroblast and antibacterial activity of polyester fibers. Polymers for Advanced Technologies, 2005, 16, 821-826.	3.2	17
102	Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials, 2004, 25, 1947-1957.	11.4	267
103	Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment. Journal of Applied Polymer Science, 2003, 88, 2797-2803.	2.6	81
104	Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate. Journal of Membrane Science, 2003, 225, 115-123.	8.2	109
105	Cholesterol oxidation using hollow fiber dialyzer immobilized with cholesterol oxidase: effect of storage and reuse. Biomaterials, 2003, 24, 549-557.	11.4	26
106	Urea permeation and hydrolysis through hollow fiber dialyzer immobilized with urease: storage and operation properties. Biomaterials, 2003, 24, 1989-1994.	11.4	32
107	Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polymers for Advanced Technologies, 2003, 14, 103-113.	3.2	66
108	Cholesterol Oxidation Using Hollow Fiber Dialyzer Immobilized with Cholesterol Oxidase: Preparation and Properties. Biotechnology Progress, 2003, 19, 361-364.	2.6	30

#	Article	IF	CITATIONS
109	Urea permeation and hydrolysis through hollow fiber dialyzer immobilized with urease. Biomaterials, 2001, 22, 891-896.	11.4	25
110	The grafting of methyl methacrylate onto ultrahigh molecular weight polyethylene fiber by plasma and UV treatment. Journal of Applied Polymer Science, 1997, 65, 365-371.	2.6	24
111	Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement. , 1997, 38, 361-369.		44
112	Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber. Journal of Applied Polymer Science, 1996, 59, 1725-1731.	2.6	35
113	Catalytic oxidation of sulfur dioxide on polyacrylonitrile-based active hollow carbon fiber. Journal of Applied Polymer Science, 1996, 62, 2287-2293.	2.6	18
114	Influence of Oxidation Conditions on Polyacrylonitrile-Based, Activated Hollow Carbon Fibers. Textile Reseach Journal, 1996, 66, 115-121.	2.2	20
115	Influence of activation time on the properties of polyacrylonitrile-based activated carbon hollow fiber. Journal of Applied Polymer Science, 1995, 58, 185-189.	2.6	15
116	Hollow-fiber liquid chromatography. AICHE Journal, 1989, 35, 814-820.	3.6	40
117	Artificial gills. Journal of Membrane Science, 1989, 42, 273-284.	8.2	43
118	A hollow-fiber trickle-bed reactor. AICHE Journal, 1987, 33, 1754-1756.	3.6	9
119	Designing hollow-fiber contactors. AICHE Journal, 1986, 32, 1910-1916.	3.6	603