Ming-Chien Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785458/publications.pdf

Version: 2024-02-01

71102 85541 5,688 119 41 71 citations h-index g-index papers 119 119 119 7558 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Designing hollow-fiber contactors. AICHE Journal, 1986, 32, 1910-1916.	3.6	603
2	The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polymers for Advanced Technologies, 2005, 16, 600-607.	3.2	318
3	Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials, 2004, 25, 1947-1957.	11.4	267
4	PBAT based nanocomposites for medical and industrial applications. Materials Science and Engineering C, 2012, 32, 1331-1351.	7.3	178
5	pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces, 2005, 44, 143-151.	5.0	133
6	Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterials Science, 2017, 5, 22-37.	5.4	130
7	Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate. Journal of Membrane Science, 2003, 225, 115-123.	8.2	109
8	Amino-silica modified Nafion membrane for vanadium redox flow battery. Journal of Power Sources, 2015, 282, 562-571.	7.8	103
9	Surface Modification of Poly(<scp> </scp> -lactic acid) Membrane via Layer-by-Layer Assembly of Silver Nanoparticle-Embedded Polyelectrolyte Multilayer. Bioconjugate Chemistry, 2007, 18, 1521-1529.	3.6	101
10	Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. International Journal of Pharmaceutics, 2008, 346, 38-46.	5.2	101
11	Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydrate Polymers, 2012, 88, 809-819.	10.2	100
12	Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Materials Letters, 2013, 93, 133-136.	2.6	99
13	Prevention of surfactant wetting with agarose hydrogel layer for direct contact membrane distillation used in dyeing wastewater treatment. Journal of Membrane Science, 2015, 475, 511-520.	8.2	95
14	Miscibility, thermal characterization and crystallization of poly(l-lactide) and poly(tetramethylene) Tj ETQq0 0 0 0	rgBJ_{Over	lock 10 Tf 50
15	Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials, 2005, 26, 1437-1444.	11.4	91
16	Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polymers for Advanced Technologies, 2005, 16, 413-419.	3.2	91
17	Blood compatibility of novel poly(\hat{l}^3 -glutamic acid)/polyvinyl alcohol hydrogels. Colloids and Surfaces B: Biointerfaces, 2006, 47, 43-49.	5.0	83
18	Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment. Journal of Applied Polymer Science, 2003, 88, 2797-2803.	2.6	81

#	Article	IF	Citations
19	An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates. Materials Chemistry and Physics, 2007, 101, 93-98.	4.0	80
20	Characterization, degradation and biocompatibility of PBAT based nanocomposites. Applied Clay Science, 2013, 80-81, 291-298.	5.2	80
21	Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polymers for Advanced Technologies, 2006, 17, 439-443.	3.2	79
22	Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and Surfaces B: Biointerfaces, 2014, 123, 986-994.	5.0	79
23	Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Research Letters, 2014, 9, 497.	5.7	78
24	In-Vitro Hemocompatibility Evaluation of a Thermoplastic Polyurethane Membrane with Surface-Immobilized Water-Soluble Chitosan and Heparin. Macromolecular Bioscience, 2005, 5, 1013-1021.	4.1	73
25	Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces, 2005, 44, 82-92.	5.0	72
26	Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polymers for Advanced Technologies, 2003, 14, 103-113.	3.2	66
27	Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers. Separation and Purification Technology, 2007, 57, 209-219.	7.9	66
28	Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydrate Polymers, 2012, 88, 1304-1312.	10.2	64
29	Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. European Polymer Journal, 2013, 49, 706-717.	5.4	61
30	Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release. Nanoscale Research Letters, 2017, 12, 355.	5.7	60
31	Preparation of electrospun alginate fibers with chitosan sheath. Carbohydrate Polymers, 2012, 87, 2357-2361.	10.2	59
32	Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloids and Surfaces B: Biointerfaces, 2007, 54, 222-229.	5.0	55
33	Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. Polymers, 2019, 11, 944.	4.5	55
34	Novel Silver/Poly(vinyl alcohol) Nanocomposites for Surface-Enhanced Raman Scattering-Active Substrates. Macromolecular Rapid Communications, 2005, 26, 1942-1947.	3.9	54
35	Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent. Polymers for Advanced Technologies, 2009, 20, 98-103.	3.2	53
36	Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Nanoscale Research Letters, 2015, 10, 397.	5.7	51

3

#	Article	IF	Citations
37	Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS–polyurethane–HEMA hydrogel. Colloids and Surfaces B: Biointerfaces, 2009, 70, 132-141.	5.0	49
38	Preparation and characterization of biodegradable polycaprolactone/multiwalled carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2009, 112, 660-668.	2.6	48
39	Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. Journal of Polymer Research, 2011, 18, 319-327.	2.4	46
40	Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) blending with Organoclay. Journal of Polymer Research, 2011, 18, 2151-2159.	2.4	45
41	Evaluation of hydrogel composing of Pluronic F127 and carboxymethyl hexanoyl chitosan as injectable scaffold for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2016, 146, 204-211.	5.0	45
42	Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement., 1997, 38, 361-369.		44
43	Artificial gills. Journal of Membrane Science, 1989, 42, 273-284.	8.2	43
44	Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	42
45	Hollow-fiber liquid chromatography. AICHE Journal, 1989, 35, 814-820.	3.6	40
46	Fabrication and characterization of electrospun silk fibroin/TiO ₂ nanofibrous mats for wound dressings. Polymers for Advanced Technologies, 2012, 23, 1066-1076.	3.2	40
47	Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique. Colloids and Surfaces B: Biointerfaces, 2015, 136, 735-743.	5.0	39
48	Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. Journal of Polymer Research, 2015, 22, 1.	2.4	37
49	Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber. Journal of Applied Polymer Science, 1996, 59, 1725-1731.	2.6	35
50	Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2016, 140, 567-573.	5.0	35
51	Preparation and characterization of nanocomposite of maleated poly(butylene) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf	59,182 Td (
52	Urea permeation and hydrolysis through hollow fiber dialyzer immobilized with urease: storage and operation properties. Biomaterials, 2003, 24, 1989-1994.	11.4	32
53	Biocompatibility and antibacterial activity of chitosan and hyaluronic acid immobilized polyester fibers. Journal of Applied Polymer Science, 2007, 104, 220-225.	2.6	32
54	Biofunctional properties of polyester fibers grafted with chitosan and collagen. Polymers for Advanced Technologies, 2007, 18, 235-239.	3.2	32

#	Article	IF	Citations
55	Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Colloids and Surfaces B: Biointerfaces, 2008, 61, 43-52.	5.0	32
56	Study on the Crystallization Kinetic and Characterization of Poly(lactic acid) and Poly(vinyl alcohol) Blends. Polymer-Plastics Technology and Engineering, 2008, 47, 1289-1296.	1.9	32
57	Cellular fusion and whitening effect of a chitosan derivative coated liposome. Colloids and Surfaces B: Biointerfaces, 2012, 90, 169-176.	5.0	31
58	Cholesterol Oxidation Using Hollow Fiber Dialyzer Immobilized with Cholesterol Oxidase: Preparation and Properties. Biotechnology Progress, 2003, 19, 361-364.	2.6	30
59	Hemocompatibility of Layer-by-Layer Hyaluronic Acid/Heparin Nanostructure Coating on Stainless Steel for Cardiovascular Stents and its Use for Drug Delivery. Journal of Nanoscience and Nanotechnology, 2006, 6, 3163-3170.	0.9	30
60	Effect of draw ratio and coagulant composition on polyacrylonitrile hollow fiber membranes. Separation and Purification Technology, 2006, 52, 380-387.	7.9	29
61	Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl) Tj ETQq1	1 0. <u>78</u> 431	4 rgBT /Overl
62	Thermo-reversible injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110606.	5.0	28
63	Layered hydrogel of poly (\hat{I}^3 -glutamic acid), sodium alginate, and chitosan: Fluorescence observation of structure and cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2011, 86, 409-413.	5.0	27
64	Cholesterol oxidation using hollow fiber dialyzer immobilized with cholesterol oxidase: effect of storage and reuse. Biomaterials, 2003, 24, 549-557.	11.4	26
65	Effect of coagulant temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes. Polymers for Advanced Technologies, 2005, 16, 524-532.	3.2	26
66	Biocompatibility of organically modified nanocomposites based on PBAT. Journal of Polymer Research, 2013, 20, 1.	2.4	26
67	Urea permeation and hydrolysis through hollow fiber dialyzer immobilized with urease. Biomaterials, 2001, 22, 891-896.	11.4	25
68	Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone. Applied Surface Science, 2020, 521, 146372.	6.1	25
69	The grafting of methyl methacrylate onto ultrahigh molecular weight polyethylene fiber by plasma and UV treatment. Journal of Applied Polymer Science, 1997, 65, 365-371.	2.6	24
70	Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Research Letters, 2015, 10, 412.	5.7	23
71	Electrochemical Polymerization of PEDOT–Graphene Oxide–Heparin Composite Coating for Anti-fouling and Anti-clotting of Cardiovascular Stents. Polymers, 2019, 11, 1520.	4.5	22
72	The effect of covalent immobilization of sialic acid on the removal of lipopolysaccharide and reactive oxygen species for polyethylene terephthalate. Polymers for Advanced Technologies, 2011, 22, 1872-1878.	3.2	21

#	Article	IF	CITATIONS
73	Influence of Oxidation Conditions on Polyacrylonitrile-Based, Activated Hollow Carbon Fibers. Textile Reseach Journal, 1996, 66, 115-121.	2.2	20
74	Cytocompatibility and Antibacterial Activity of a PHBV Membrane with Surface-Immobilized Water-Soluble Chitosan and Chondroitin-6-sulfate. Macromolecular Bioscience, 2006, 6, 348-357.	4.1	20
75	Core–Shell Magnetic Nanoparticles of Heparin Conjugate as Recycling Anticoagulants. Journal of Biomedical Nanotechnology, 2007, 3, 353-359.	1.1	20
76	Behaviors of controlled drug release of magnetic-gelatin hydrogel coated stainless steel for drug-eluting-stents application. Journal of Magnetism and Magnetic Materials, 2007, 310, 2874-2876.	2.3	20
77	The controlled release behavior and pH―and thermoâ€sensitivity of alginate/poly(vinyl alcohol) blended hydrogels. Polymers for Advanced Technologies, 2009, 20, 680-688.	3.2	20
78	Swelling and biocompatibility of sodium alginate/poly(<i>γ</i> â€glutamic acid) hydrogels. Polymers for Advanced Technologies, 2010, 21, 561-567.	3.2	20
79	Novel pH-sensitive drug carriers of carboxymethyl-hexanoyl chitosan (Chitosonic® Acid) modified liposomes. RSC Advances, 2015, 5, 23134-23143.	3.6	20
80	Hemocompatibility and anti-fouling behavior of multilayer biopolymers immobilized on gold-thiolized drug-eluting cardiovascular stents. Colloids and Surfaces B: Biointerfaces, 2019, 173, 470-477.	5.0	20
81	Preparation of Amphiphilic Chitosan–Graphene Oxide–Cellulose Nanocrystalline Composite Hydrogels and Their Biocompatibility and Antibacterial Properties. Applied Sciences (Switzerland), 2019, 9, 3051.	2.5	19
82	Catalytic oxidation of sulfur dioxide on polyacrylonitrile-based active hollow carbon fiber. Journal of Applied Polymer Science, 1996, 62, 2287-2293.	2.6	18
83	Construction of antithrombogenic polyelectrolyte multilayer on thermoplastic polyurethane via layer-by-layer self-assembly technique. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 105-113.	3.4	18
84	Effect of immobilization with chondroitin-6-sulfate and grafting with chitosan on fibroblast and antibacterial activity of polyester fibers. Polymers for Advanced Technologies, 2005, 16, 821-826.	3.2	17
85	In vitro evaluation of cellulose acetate hemodialyzer immobilized with heparin. Polymers for Advanced Technologies, 2006, 17, 453-462.	3.2	16
86	Influence of activation time on the properties of polyacrylonitrile-based activated carbon hollow fiber. Journal of Applied Polymer Science, 1995, 58, 185-189.	2.6	15
87	Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane. Polymers for Advanced Technologies, 2006, 17, 419-425.	3.2	13
88	The reduction of oxidative stress, anticoagulation of platelets, and inhibition of lipopolysaccharide by conjugated linoleic acid bonded on a polysulfone membrane. Polymers for Advanced Technologies, 2007, 18, 286-291.	3.2	13
89	A Novel Approach to Increase the Oxygen Permeability of Soft Contact Lenses by Incorporating Silica Sol. Polymers, 2020, 12, 2087.	4.5	13
90	The Ophthalmic Performance of Hydrogel Contact Lenses Loaded with Silicone Nanoparticles. Polymers, 2020, 12, 1128.	4.5	13

#	Article	IF	Citations
91	Effect of grafting of poly(styrenesulfonate) onto Nafion membrane on the performance of vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2017, 807, 88-96.	3.8	12
92	Reduced graphene oxide nanosheets decorated with core-shell of Fe3O4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121578.	3.9	12
93	Synthesis and characterization of soft contact lens based on the combination of silicone nanoparticles with hydrophobic and hydrophilic monomers. Journal of Polymer Research, 2019, 26, 1.	2.4	11
94	Magnetic Graphene-Based Sheets for Bacteria Capture and Destruction Using a High-Frequency Magnetic Field. Nanomaterials, 2020, 10, 674.	4.1	11
95	Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111957.	5.0	11
96	<i>In vitro</i> biocompatibility of threeâ€dimensional chitosan scaffolds immobilized with chondroitinâ€6â€sulfate. Polymers for Advanced Technologies, 2008, 19, 377-384.	3.2	10
97	Effect of immobilization of polysaccharides on the biocompatibility of poly(butyleneadipateâ€ <i>co</i> â€terephthalate) films. Polymers for Advanced Technologies, 2010, 21, 543-553.	3.2	10
98	Improvement of cytocompatibility of polylactide by filling with marine algae powder. Materials Science and Engineering C, 2015, 50, 309-316.	7.3	10
99	Endothelial cell growth on polyurethane modified with acrylic acid and REDV peptide. Surface Innovations, 2020, 8, 89-104.	2.3	10
100	Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene. Polymers, 2020, 12, 1321.	4.5	10
101	A hollow-fiber trickle-bed reactor. AICHE Journal, 1987, 33, 1754-1756.	3.6	9
102	Effect of poly(styrene-co-maleic anhydride) on physical properties and crystalline behavior of nylon-6/PEBA blends. Journal of Polymer Research, 2017, 24, 1.	2.4	9
103	Characterizations of doxorubicin-loaded PEGylated magnetic liposomes for cancer cells therapy. Journal of Polymer Research, 2019, 26, 1.	2.4	9
104	Organic–inorganic hybrid membranes prepared from the sol–gel process of poly(butyleneadipateâ€ <i>co</i> â€ŧerephthalate) and TiO ₂ . Polymers for Advanced Technologies, 2009, 20, 672-679.	3.2	8
105	Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites. Bio-Medical Materials and Engineering, 2015, 26, S147-S154.	0.6	8
106	Mesoporous Silica Nanospheres Decorated by Ag–Nanoparticle Arrays with 5 nm Interparticle Gap Exhibit Insignificant Hot-Spot Raman Enhancing Effect. Journal of Physical Chemistry C, 2019, 123, 18528-18535.	3.1	8
107	Novel strategy for flexible and super-hydrophobic SERS substrate fabricated by deposited gold nanoislands on organic semiconductor nanostructures for bio-detection. Surface and Coatings Technology, 2022, 435, 128251.	4.8	8
108	Anti-fouling and anti-coagulation capabilities of PEDOT-biopolymer coating by in-situ electrochemical copolymerization. Surface and Coatings Technology, 2020, 397, 125963.	4.8	6

#	Article	IF	CITATIONS
109	Removal of lipopolysaccharide and reactive oxygen species using sialic acid immobilized polysulfone dialyzer. Polymers for Advanced Technologies, 2009, 20, 871-877.	3.2	5
110	Effect of poly(<i>î)³</i> î>â€glutamic acid) on the gelation of Pluronic F127. Polymers for Advanced Technologies, 2009, 20, 703-705.	3.2	5
111	Core-Shell Structure of Gold Nanoparticles with Inositol Hexaphosphate Nanohybrids for Label-Free and Rapid Detection by SERS Nanotechnology. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	5
112	Effect of soft segment content of Pebax \hat{A}^{\otimes} Rnew on the properties of Nylon-6/SMA/PEBA blends. Journal of Polymer Research, 2019, 26, 1.	2.4	5
113	Reduction of free radicals and endotoxin by conjugated linoleic acid loaded in anin situ-synthesized poly(N-isopropyl acrylamide) thin layer. Journal of Applied Polymer Science, 2009, 113, 3222-3227.	2.6	4
114	Effect of immobilization of poly(\hat{l}^3 -glutamic acid) on the biocompatibility of electrospun poly (L-lactide) mats. Journal of Polymer Research, 2018, 25, 1.	2.4	4
115	Biotinâ€decorated redoxâ€responsive micelles from diselenideâ€linked starâ€shaped copolymers for the targeted delivery and controlled release of doxorubicin in cancer cells. Journal of Applied Polymer Science, 2022, 139, .	2.6	4
116	Replica of Bionic Nepenthes Peristome-like and Anti-Fouling Structures for Self-Driving Water and Raman-Enhancing Detection. Polymers, 2022, 14, 2465.	4.5	3
117	Effect of quaternized chitosan on the fusion efficiency and cytocompatibility of liposomes. Journal of Polymer Research, 2012, 19, 1.	2.4	2
118	Preparation of <i>O</i> â€diallylammonium chitosan with antibacterial activity and cytocompatibility. Polymer International, 2013, 62, 507-514.	3.1	2
119	Crystallization behavior and tensile property of poly(trimethyleneterephthalate)/styrene-ethylene-buthylene-styrene composites. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 474-480.	1.0	1