
Denis Mihaela Panaitescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785349/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Potential of Biopolyesters as Plasticizers for Polylactide. , 2022, 7, .		Ο
2	Effect of Nanocellulose Type on the Properties of a Bio-Based Epoxy System. , 2022, 7, .		0
3	Poly(lactic acid)/Poly(3-hydroxybutyrate) Biocomposites with Differently Treated Cellulose Fibers. Molecules, 2022, 27, 2390.	1.7	7
4	Polyhydroxybutyrate blends: A solution for biodegradable packaging?. International Journal of Biological Macromolecules, 2022, 207, 263-277.	3.6	43
5	Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices. Nanomaterials, 2022, 12, 95.	1.9	4
6	Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals. Polymers, 2022, 14, 1974.	2.0	12
7	The Soil Biodegradability of Structured Composites Based on Cellulose Cardboard and Blends of Polylactic Acid and Polyhydroxybutyrate. Journal of Polymers and the Environment, 2021, 29, 2310-2320.	2.4	18
8	Influence of microfibrillated cellulose and soft biocomponent on the morphology and thermal properties of thermoplastic polyurethanes. Journal of Applied Polymer Science, 2021, 138, 50951.	1.3	5
9	Effect of calcium stearate as a lubricant and catalyst on the thermal degradation of poly(3-hydroxybutyrate). International Journal of Biological Macromolecules, 2021, 190, 780-791.	3.6	5
10	Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges. Carbohydrate Polymers, 2021, 272, 118458.	5.1	16
11	The Effect of SEBS/Halloysite Masterbatch Obtained in Different Extrusion Conditions on the Properties of Hybrid Polypropylene/Glass Fiber Composites for Auto Parts. Polymers, 2021, 13, 3560.	2.0	1
12	Microfibrillated Cellulose Grafted with Metacrylic Acid as a Modifier in Poly(3-hydroxybutyrate). Polymers, 2021, 13, 3970.	2.0	6
13	Comprehensive characterization of silica-modified silicon rubbers. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103427.	1.5	15
14	Chemical and mineral characterization of Romanian book paper materials (XVII–XIXth century). Microchemical Journal, 2020, 152, 104307.	2.3	7
15	Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing. Nanomaterials, 2020, 10, 51.	1.9	87
16	Thermal and mechanical properties of poly(3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Industrial Crops and Products, 2020, 145, 112071.	2.5	50
17	Bio-Based Polyester/Cellulose Films for Engineering Applications. Proceedings (mdpi), 2020, 57, .	0.2	0
18	Poly(3-bydroxybutyrate) Modified by Plasma and TEMPO-Oxidized Celluloses, Polymers, 2020, 12, 1510	2.0	14

#	Article	IF	CITATIONS
19	Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization. International Journal of Biological Macromolecules, 2020, 164, 1867-1878.	3.6	13
20	Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. Materials Science and Engineering C, 2020, 110, 110740.	3.8	46
21	Effect of hemp fiber length on the mechanical and thermal properties of polypropylene/SEBS/hemp fiber composites. Journal of Materials Research and Technology, 2020, 9, 10768-10781.	2.6	33
22	Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules, 2020, 25, 4045.	1.7	48
23	Low Molecular Weight and Polymeric Modifiers as Toughening Agents in Poly(3-Hydroxybutyrate) Films. Polymers, 2020, 12, 2446.	2.0	17
24	Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 2020, 179, 109203.	2.7	14
25	Recycled polypropylene with improved thermal stability and melt processability. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2469-2480.	2.0	12
26	High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Composites Part B: Engineering, 2019, 174, 107062.	5.9	42
27	Raman spectroscopy and molecular bases of elasticity: SEBS-graphite composites. Polymer, 2019, 176, 74-88.	1.8	12
28	Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2387-2398.	2.0	34
29	Effect of Different POSS Structures on Thermal and Morphological Properties of a Biodegradable Polyester. Proceedings (mdpi), 2019, 29, .	0.2	Ο
30	Preparation and Characterization of Highly Porous Cellulosic Foams for Biomedical Applications. Proceedings (mdpi), 2019, 29, 8.	0.2	0
31	Surface properties, thermal, and mechanical characteristics of poly(vinyl alcohol)–starchâ€bacterial cellulose composite films. Journal of Applied Polymer Science, 2018, 135, 45800.	1.3	18
32	Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers, 2018, 10, 1249.	2.0	59
33	Cellulose defibrillation and functionalization by plasma in liquid treatment. Scientific Reports, 2018, 8, 15473.	1.6	43
34	Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites. Cellulose, 2018, 25, 5569-5591.	2.4	29
35	Surface Treatment of Bacterial Cellulose in Mild, Eco-Friendly Conditions. Coatings, 2018, 8, 221.	1.2	30
36	Recent Advances in 3D Printing of Aliphatic Polyesters. Bioengineering, 2018, 5, 2.	1.6	123

#	Article	IF	CITATIONS
37	Treatment of Nanocellulose by Submerged Liquid Plasma for Surface Functionalization. Nanomaterials, 2018, 8, 467.	1.9	29
38	Block Copolymer Elastomer with Graphite Filler: Effect of Processing Conditions and Silane Coupling Agent on the Composite Properties. Polymers, 2018, 10, 46.	2.0	15
39	Plasticized poly(3â€hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	67
40	Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Materials Letters, 2017, 194, 160-163.	1.3	46
41	Medium Chain-Length Polyhydroxyalkanoate Copolymer Modified by Bacterial Cellulose for Medical Devices. Biomacromolecules, 2017, 18, 3222-3232.	2.6	39
42	The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids. Nanomaterials, 2017, 7, 47.	1.9	43
43	Biocomposites from Polylactic Acid and Bacterial Cellulose Nanofibers Obtained by Mechanical Treatment. BioResources, 2016, 12, .	0.5	6
44	Biocompatible polyhydroxyalkanoates/bacterial cellulose composites: Preparation, characterization, and <i>in vitro</i> evaluation. Journal of Biomedical Materials Research - Part A, 2016, 104, 2576-2584.	2.1	46
45	Influence of hemp fibers with modified surface on polypropylene composites. Journal of Industrial and Engineering Chemistry, 2016, 37, 137-146.	2.9	67
46	Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose. Industrial Crops and Products, 2016, 93, 251-266.	2.5	59
47	Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Materials and Design, 2016, 110, 790-801.	3.3	50
48	The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. Journal of Materials Science, 2016, 51, 9771-9791.	1.7	64
49	Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. Journal of Physics and Chemistry of Solids, 2016, 89, 97-106.	1.9	34
50	Influence of Thermal Treatment on Mechanical and Morphological Characteristics of Polyamide 11/Cellulose Nanofiber Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	15
51	Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Industrial Crops and Products, 2015, 70, 170-177.	2.5	84
52	Electrical Properties of Polyethylene Composites with Low Content of Neodymium. Polymer-Plastics Technology and Engineering, 2015, 54, 1135-1143.	1.9	3
53	Thermal properties of water-resistant starch – polyvinyl alcohol films modified with cellulose nanofibers. Polymer Degradation and Stability, 2015, 121, 385-397.	2.7	75
54	Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Composites Part B: Engineering, 2015, 69, 286-295.	5.9	59

#	Article	IF	CITATIONS
55	Influence of octyl substituted octakis(dimethylsiloxy)octasilsesquioxane on the morphology and thermal and mechanical properties of low density polyethylene. Polymer International, 2014, 63, 228-236.	1.6	5
56	The effect of polystyrene blocks content and of type of elastomer blocks on the properties of block copolymer/layered silicate nanocomposites. Journal of Alloys and Compounds, 2014, 616, 569-576.	2.8	7
57	Polypropylene/organoclay/SEBS nanocomposites with toughness–stiffness properties. RSC Advances, 2014, 4, 6573.	1.7	22
58	Influence of melt processing induced orientation on the morphology and mechanical properties of poly(styrene-b-ethylene/butylene-b-styrene) block copolymers and their composites with graphite. Materials & Design, 2014, 64, 694-705.	5.1	17
59	Influence of branched or un-branched alkyl substitutes of POSS on morphology, thermal and mechanical properties of polyethylene. Composites Part B: Engineering, 2013, 50, 98-106.	5.9	27
60	Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. European Polymer Journal, 2013, 49, 3857-3866.	2.6	67
61	Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydrate Polymers, 2013, 91, 377-384.	5.1	344
62	Effect of nanosilica on the morphology of polyethylene investigated by AFM. Composites Science and Technology, 2013, 74, 131-138.	3.8	25
63	The influence of alkyl substituents of POSS in polyethylene nanocomposites. Polymer, 2013, 54, 2347-2354.	1.8	36
64	Hybrid polymeric latexes containing magnetite. Colloid and Polymer Science, 2013, 291, 2345-2358.	1.0	5
65	The effect of poly[styrene- <i>b</i> -(ethylene- <i>co</i> -butylene)- <i>b</i> -styrene] on dielectric, thermal, and morphological characteristics of polypropylene/silica nanocomposites. Polymer Engineering and Science, 2013, 53, 2081-2092.	1.5	26
66	Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites. Polymer Bulletin, 2012, 69, 1073-1091.	1.7	35
67	Morphological investigation of PP/nanosilica composites containing SEBS. Polymer Testing, 2012, 31, 355-365.	2.3	35
68	Influence of Rutile and Anatase TiO ₂ Nanoparticles on Polyethylene Properties. Polymer-Plastics Technology and Engineering, 2011, 50, 196-202.	1.9	30
69	Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources, 2011, 6, 487-512.	0.5	165
70	Properties of Polymer Composites with Cellulose Microfibrils. Molecular Crystals and Liquid Crystals, 2008, 484, 86/[452]-98/[464].	0.4	18
71	Polymer composites with cellulose microfibrils. Polymer Engineering and Science, 2007, 47, 1228-1234.	1.5	56

72 Cellulose Nanofibers: Applications. , 0, , 1441-1452.

5