Carlos J Perez-Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785310/publications.pdf Version: 2024-02-01

		567281	526287
29	1,423	15	27
papers	citations	h-index	g-index
33	33	33	2873
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. International Journal of Radiation Biology, 2023, 99, 119-137.	1.8	4
2	Feasibility of a mini-pig model of radiation-induced brain injury to one cerebral hemisphere. Radiation Oncology, 2021, 16, 30.	2.7	3
3	Feasibility of quantification of murine radiation-induced pulmonary fibrosis with microCT imaging. Journal of Radiation Research, 2021, , .	1.6	0
4	Impact of mouse strain and sex when modeling radiation necrosis. Radiation Oncology, 2020, 15, 141.	2.7	14
5	Comparison of silver nanoparticle-induced inflammatory responses between healthy and metabolic syndrome mouse models. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 249-268.	2.3	20
6	Minimal difference between fractionated and single-fraction exposure in a murine model of radiation necrosis. Radiation Oncology, 2019, 14, 144.	2.7	6
7	Influence of Dose Uniformity when Replicating a Gamma Knife Mouse Model of Radiation Necrosis with a Preclinical Irradiator. Radiation Research, 2019, 191, 352.	1.5	4
8	Effects of an artificial placenta on brain development and injury in premature lambs. Journal of Pediatric Surgery, 2018, 53, 1234-1239.	1.6	22
9	Inhibitors of HIF-1α and CXCR4 Mitigate the Development of Radiation Necrosis in Mouse Brain. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1016-1025.	0.8	25
10	Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF. Molecular Imaging and Biology, 2018, 20, 150-159.	2.6	5
11	Diffusion MRI quantifies early axonal loss in the presence of nerve swelling. Journal of Neuroinflammation, 2017, 14, 78.	7.2	39
12	Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation. Journal of Neuro-Oncology, 2017, 133, 9-16.	2.9	16
13	Design, construction, and in vivo feasibility of a positioning device for irradiation of mice brains using a clinical linear accelerator and intensity modulated radiation therapy. International Journal of Radiation Biology, 2017, 93, 1321-1326.	1.8	4
14	O ₂ â€sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magnetic Resonance in Medicine, 2016, 75, 2442-2447.	3.0	43
15	A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature, 2016, 534, 538-543.	27.8	534
16	O2-sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magnetic Resonance in Medicine, 2016, 75, spcone-spcone.	3.0	0
17	A Gamma-Knife-Enabled Mouse Model of Cerebral Single-Hemisphere Delayed Radiation Necrosis. PLoS ONE, 2015, 10, e0139596.	2.5	31
18	Specificity of vascular endothelial growth factor treatment for radiation necrosis. Radiotherapy and Oncology, 2015, 117, 382-385.	0.6	14

#	Article	IF	CITATIONS
19	Perilesional edema in radiation necrosis reflects axonal degeneration. Radiation Oncology, 2015, 10, 33.	2.7	12
20	Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model. International Journal of Radiation Oncology Biology Physics, 2014, 90, 446-453.	0.8	27
21	A GSK-3Î ² Inhibitor Protects Against Radiation Necrosis in Mouse Brain. International Journal of Radiation Oncology Biology Physics, 2014, 89, 714-721.	0.8	20
22	Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neurolmage, 2014, 100, 244-253.	4.2	35
23	Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine, 2014, 9, 1209-1222.	3.3	62
24	Use of Magnetization Transfer Contrast MRI to Detect Early Molecular Pathology in Alzheimer's Disease. Magnetic Resonance in Medicine, 2014, 71, 333-338.	3.0	23
25	Improvements in a Mouse Model of Alzheimer's Disease through Sod2 Overexpression Are Due to Functional and Not Structural Alterations. Magnetic Resonance Insights, 2012, 5, MRI.S9352.	2.5	9
26	Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Letters, 2010, 10, 4920-4928.	9.1	157
27	In vitro and in vivo magnetic resonance imaging (MRI) detection of GFP through magnetization transfer contrast (MTC). Neurolmage, 2010, 50, 375-382.	4.2	9
28	A Molecularly Targeted Theranostic Probe for Ovarian Cancer. Molecular Cancer Therapeutics, 2010, 9, 1028-1038.	4.1	77
29	Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Advanced Functional Materials, 2009, 19, 3901-3909.	14.9	208