Carlos J Perez-Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8785310/publications.pdf

Version: 2024-02-01

567281 526287 29 1,423 15 27 citations g-index h-index papers 33 33 33 2873 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature, 2016, 534, 538-543.	27.8	534
2	Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Advanced Functional Materials, 2009, 19, 3901-3909.	14.9	208
3	Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Letters, 2010, 10, 4920-4928.	9.1	157
4	A Molecularly Targeted Theranostic Probe for Ovarian Cancer. Molecular Cancer Therapeutics, 2010, 9, 1028-1038.	4.1	77
5	Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine, 2014, 9, 1209-1222.	3.3	62
6	O ₂ â€sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magnetic Resonance in Medicine, 2016, 75, 2442-2447.	3.0	43
7	Diffusion MRI quantifies early axonal loss in the presence of nerve swelling. Journal of Neuroinflammation, 2017, 14, 78.	7.2	39
8	Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neurolmage, 2014, 100, 244-253.	4.2	35
9	A Gamma-Knife-Enabled Mouse Model of Cerebral Single-Hemisphere Delayed Radiation Necrosis. PLoS ONE, 2015, 10, e0139596.	2.5	31
10	Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model. International Journal of Radiation Oncology Biology Physics, 2014, 90, 446-453.	0.8	27
11	Inhibitors of HIF-1î± and CXCR4 Mitigate the Development of Radiation Necrosis in Mouse Brain. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1016-1025.	0.8	25
12	Use of Magnetization Transfer Contrast MRI to Detect Early Molecular Pathology in Alzheimer's Disease. Magnetic Resonance in Medicine, 2014, 71, 333-338.	3.0	23
13	Effects of an artificial placenta on brain development and injury in premature lambs. Journal of Pediatric Surgery, 2018, 53, 1234-1239.	1.6	22
14	A GSK- $3\hat{l}^2$ Inhibitor Protects Against Radiation Necrosis in Mouse Brain. International Journal of Radiation Oncology Biology Physics, 2014, 89, 714-721.	0.8	20
15	Comparison of silver nanoparticle-induced inflammatory responses between healthy and metabolic syndrome mouse models. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 249-268.	2.3	20
16	Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation. Journal of Neuro-Oncology, 2017, 133, 9-16.	2.9	16
17	Specificity of vascular endothelial growth factor treatment for radiation necrosis. Radiotherapy and Oncology, 2015, 117, 382-385.	0.6	14
18	Impact of mouse strain and sex when modeling radiation necrosis. Radiation Oncology, 2020, 15, 141.	2.7	14

#	Article	IF	CITATIONS
19	Perilesional edema in radiation necrosis reflects axonal degeneration. Radiation Oncology, 2015, 10, 33.	2.7	12
20	In vitro and in vivo magnetic resonance imaging (MRI) detection of GFP through magnetization transfer contrast (MTC). Neurolmage, 2010, 50, 375-382.	4.2	9
21	Improvements in a Mouse Model of Alzheimer's Disease through Sod2 Overexpression Are Due to Functional and Not Structural Alterations. Magnetic Resonance Insights, 2012, 5, MRI.S9352.	2.5	9
22	Minimal difference between fractionated and single-fraction exposure in a murine model of radiation necrosis. Radiation Oncology, 2019, 14, 144.	2.7	6
23	Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF. Molecular Imaging and Biology, 2018, 20, 150-159.	2.6	5
24	Design, construction, and in vivo feasibility of a positioning device for irradiation of mice brains using a clinical linear accelerator and intensity modulated radiation therapy. International Journal of Radiation Biology, 2017, 93, 1321-1326.	1.8	4
25	Influence of Dose Uniformity when Replicating a Gamma Knife Mouse Model of Radiation Necrosis with a Preclinical Irradiator. Radiation Research, 2019, 191, 352.	1.5	4
26	Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. International Journal of Radiation Biology, 2023, 99, 119-137.	1.8	4
27	Feasibility of a mini-pig model of radiation-induced brain injury to one cerebral hemisphere. Radiation Oncology, 2021, 16, 30.	2.7	3
28	O2-sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magnetic Resonance in Medicine, 2016, 75, spcone-spcone.	3.0	0
29	Feasibility of quantification of murine radiation-induced pulmonary fibrosis with microCT imaging. Journal of Radiation Research, 2021, , .	1.6	O