Yuan Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878483/publications.pdf

Version: 2024-02-01

46 2,788 27 papers citations h-index

233338 .7 45 ndex g-index

46 46 all docs citations

46 times ranked 3967 citing authors

#	Article	IF	CITATIONS
1	Deepâ€Blue OLEDs with Rec.2020 Blue Gamut Compliance and EQE Over 22% Achieved by Conformation Engineering. Advanced Materials, 2022, 34, e2200537.	11.1	46
2	Phase-Dependent Shell Growth and Optical Properties of ZnSe/ZnS Core/Shell Nanorods. Chemistry of Materials, 2021, 33, 3413-3427.	3.2	12
3	Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane. Advanced Functional Materials, 2021, 31, 2102182.	7.8	24
4	Iron Self-Boosting Polymer Nanoenzyme for Low-Temperature Photothermal-Enhanced Ferrotherapy. ACS Applied Materials & District Samp; Interfaces, 2021, 13, 30274-30283.	4.0	35
5	Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral Oligomeric Silsesquioxane Matrix. Journal of Physical Chemistry C, 2021, 125, 15094-15102.	1.5	4
6	Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie, 2020, 132, 10083-10088.	1.6	8
7	Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2020, 59, 9997-10002.	7.2	57
8	Highly Luminescent Solid‧tate Carbon Dots Embedded in a Boric Acid Matrix. ChemistrySelect, 2020, 5, 13969-13973.	0.7	8
9	Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a Methylammonium Lead Iodide Perovskite Matrix. ACS Applied Materials & Interfaces, 2020, 12, 35201-35210.	4.0	21
10	Growth of Multinary Copper-Based Sulfide Shells on CulnSe ₂ Nanocrystals for Significant Improvement of Their Near-Infrared Emission. Chemistry of Materials, 2020, 32, 7842-7849.	3.2	15
11	Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. Nanomaterials, 2020, 10, 1063.	1.9	15
12	Constructing a Spectral Down Converter to Enhance Cu(In,Ga)Se ₂ Solar Cell Performance Using Yttrium Aluminum Garnet:Ce ³⁺ Ceramics. Solar Rrl, 2020, 4, 1900518.	3.1	3
13	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.	7.8	72
14	Incorporating copper nanoclusters into a zeolitic imidazole framework-90 for use as a highly sensitive adenosine triphosphate sensing system to evaluate the freshness of aquatic products. Sensors and Actuators B: Chemical, 2020, 308, 127720.	4.0	31
15	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	7.3	136
16	Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with Anisotropic Emission. ACS Nano, 2019, 13, 8237-8245.	7.3	84
17	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	7.8	59
18	Identification of Molecular Fluorophore as a Component of Carbon Dots able to Induce Gelation in a Fluorescent Multivalent-Metal-Ion-Free Alginate Hydrogel. Scientific Reports, 2019, 9, 15080.	1.6	7

#	Article	IF	Citations
19	Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQq1	1 0. ₹8431	.4 9gBT /Over
20	Chemically Synthesized Carbon Nanorods with Dual Polarized Emission. ACS Nano, 2019, 13, 12024-12031.	7. 3	31
21	Ligand-assisted reduction and reprecipitation synthesis of highly luminescent metal nanoclusters. Nanoscale Advances, 2019, 1, 834-839.	2.2	11
22	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	4.1	82
23	Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019, 7, 2207-2211.	2.7	68
24	Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte Chemie - International Edition, 2019, 58, 7040-7044.	7.2	137
25	Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte Chemie, 2019, 131, 7114-7118.	1.6	29
26	Copperâ€Nanoclusterâ€Based Transparent Ultravioletâ€Shielding Polymer Films. ChemNanoMat, 2019, 5, 110-115.	1.5	18
27	A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Selfâ€Healing Function. Small, 2018, 14, e1800315.	5.2	21
28	Aqueous-Based Cadmium Telluride Quantum Dot/Polyurethane/Polyhedral Oligomeric Silsesquioxane Composites for Color Enhancement in Display Backlights. Journal of Physical Chemistry C, 2018, 122, 13391-13398.	1.5	12
29	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.	15.6	97
30	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	1.6	12
31	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	7.2	109
32	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	6.2	181
33	Waterâ€Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous Agents and Copper Nanoclusters with Aggregationâ€Induced Emission. Advanced Functional Materials, 2018, 28, 1802848.	7.8	48
34	Reversible transformation between CsPbBr ₃ and Cs ₄ PbBr ₆ nanocrystals. CrystEngComm, 2018, 20, 4900-4904.	1.3	48
35	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5699-5708.	4.0	129

Chemical Sensing: Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks:

Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection (Part.) Tj ETQq0 0 0 rgBT /Overbock 10 Tf 5

#	Article	IF	CITATION
37	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	7.2	98
38	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	1.6	31
39	Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection. Particle and Particle Systems Characterization, 2017, 34, 1700029.	1.2	32
40	Molecular Fluorescence in Citric Acid-Based Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 2014-2022.	1.5	517
41	Room Temperature Synthesis of HgTe Quantum Dots in an Aprotic Solvent Realizing High Photoluminescence Quantum Yields in the Infrared. Chemistry of Materials, 2017, 29, 7859-7867.	3.2	27
42	Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots. Nanoscale, 2017, 9, 11730-11738.	2.8	83
43	Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots. Chemistry of Materials, 2017, 29, 10352-10361.	3.2	126
44	In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.	3.2	58
45	Aromatically C6- and C9-Substituted Phenanthro $[9,10-\langle i\rangle d\langle i\rangle]$ imidazole Blue Fluorophores: Structure $\hat{a}\in ``Property Relationship and Electroluminescent Application. ACS Applied Materials & Amp; Interfaces, 2017, 9, 26268-26278.$	4.0	69
46	Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.	2.2	68