## Yuan Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878483/publications.pdf Version: 2024-02-01



YUAN XIONC

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular Fluorescence in Citric Acid-Based Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 2014-2022.                                                                                                                 | 3.1  | 517       |
| 2  | Influence of molecular fluorophores on the research field of chemically synthesized carbon dots.<br>Nano Today, 2018, 23, 124-139.                                                                                              | 11.9 | 181       |
| 3  | Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte<br>Chemie - International Edition, 2019, 58, 7040-7044.                                                                              | 13.8 | 137       |
| 4  | sp <sup>2</sup> –sp <sup>3</sup> -Hybridized Atomic Domains Determine Optical Features of Carbon<br>Dots. ACS Nano, 2019, 13, 10737-10744.                                                                                      | 14.6 | 136       |
| 5  | Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced<br>Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials &<br>Interfaces, 2017, 9, 5699-5708.     | 8.0  | 129       |
| 6  | Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots. Chemistry of<br>Materials, 2017, 29, 10352-10361.                                                                                              | 6.7  | 126       |
| 7  | Revealing the Formation Mechanism of CsPbBr <sub>3</sub> Perovskite Nanocrystals Produced via a<br>Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57,<br>5833-5837.               | 13.8 | 109       |
| 8  | Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a<br>Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56,<br>9571-9576.            | 13.8 | 98        |
| 9  | Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.                                                                               | 30.8 | 97        |
| 10 | Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with<br>Anisotropic Emission. ACS Nano, 2019, 13, 8237-8245.                                                                            | 14.6 | 84        |
| 11 | Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots. Nanoscale, 2017, 9, 11730-11738.                                                        | 5.6  | 83        |
| 12 | Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence<br>in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.                                             | 8.0  | 82        |
| 13 | Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and<br>Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.                               | 14.9 | 72        |
| 14 | Aromatically C6- and C9-Substituted Phenanthro[9,10- <i>d</i> ]imidazole Blue Fluorophores:<br>Structure–Property Relationship and Electroluminescent Application. ACS Applied Materials &<br>Interfaces, 2017, 9, 26268-26278. | 8.0  | 69        |
| 15 | Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.                             | 4.1  | 68        |
| 16 | Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019, 7, 2207-2211.                                                                     | 5.5  | 68        |
| 17 | Deepâ€Red/Nearâ€Infrared Electroluminescence from Single omponent Chargeâ€Transfer Complex via<br>Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.                           | 14.9 | 59        |
| 18 | In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper<br>Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.                                               | 6.7  | 58        |

YUAN XIONG

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie -<br>International Edition, 2020, 59, 9997-10002.                                                                                             | 13.8 | 57        |
| 20 | Waterâ€Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous<br>Agents and Copper Nanoclusters with Aggregationâ€Induced Emission. Advanced Functional Materials,<br>2018, 28, 1802848.                            | 14.9 | 48        |
| 21 | Reversible transformation between CsPbBr <sub>3</sub> and Cs <sub>4</sub> PbBr <sub>6</sub><br>nanocrystals. CrystEngComm, 2018, 20, 4900-4904.                                                                                                   | 2.6  | 48        |
| 22 | Deepâ€Blue OLEDs with Rec.2020 Blue Gamut Compliance and EQE Over 22% Achieved by Conformation<br>Engineering. Advanced Materials, 2022, 34, e2200537.                                                                                            | 21.0 | 46        |
| 23 | Iron Self-Boosting Polymer Nanoenzyme for Low-Temperature Photothermal-Enhanced Ferrotherapy.<br>ACS Applied Materials & Interfaces, 2021, 13, 30274-30283.                                                                                       | 8.0  | 35        |
| 24 | Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission<br>Enhancement and Application for Trinitrotoluene Detection. Particle and Particle Systems<br>Characterization, 2017, 34, 1700029.              | 2.3  | 32        |
| 25 | Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a<br>Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.                                                        | 2.0  | 31        |
| 26 | Chemically Synthesized Carbon Nanorods with Dual Polarized Emission. ACS Nano, 2019, 13, 12024-12031.                                                                                                                                             | 14.6 | 31        |
| 27 | Incorporating copper nanoclusters into a zeolitic imidazole framework-90 for use as a highly sensitive adenosine triphosphate sensing system to evaluate the freshness of aquatic products. Sensors and Actuators B: Chemical, 2020, 308, 127720. | 7.8  | 31        |
| 28 | Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte<br>Chemie, 2019, 131, 7114-7118.                                                                                                                       | 2.0  | 29        |
| 29 | Room Temperature Synthesis of HgTe Quantum Dots in an Aprotic Solvent Realizing High<br>Photoluminescence Quantum Yields in the Infrared. Chemistry of Materials, 2017, 29, 7859-7867.                                                            | 6.7  | 27        |
| 30 | Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular<br>Proton Donors Chloroform and Dichloromethane. Advanced Functional Materials, 2021, 31, 2102182.                                                   | 14.9 | 24        |
| 31 | A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Selfâ€Healing Function. Small, 2018, 14, e1800315.                                                                                                  | 10.0 | 21        |
| 32 | Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a Methylammonium<br>Lead Iodide Perovskite Matrix. ACS Applied Materials & Interfaces, 2020, 12, 35201-35210.                                                         | 8.0  | 21        |
| 33 | Copperâ€Nanoclusterâ€Based Transparent Ultravioletâ€6hielding Polymer Films. ChemNanoMat, 2019, 5,<br>110-115.                                                                                                                                    | 2.8  | 18        |
| 34 | Growth of Multinary Copper-Based Sulfide Shells on CuInSe <sub>2</sub> Nanocrystals for<br>Significant Improvement of Their Near-Infrared Emission. Chemistry of Materials, 2020, 32, 7842-7849.                                                  | 6.7  | 15        |
| 35 | Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass.<br>Nanomaterials, 2020, 10, 1063.                                                                                                                   | 4.1  | 15        |
| 36 | Aqueous-Based Cadmium Telluride Quantum Dot/Polyurethane/Polyhedral Oligomeric Silsesquioxane<br>Composites for Color Enhancement in Display Backlights. Journal of Physical Chemistry C, 2018, 122,<br>13391-13398.                              | 3.1  | 12        |

YUAN XIONG

| #  | Article                                                                                                                                                                                                        | IF                | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 37 | Revealing the Formation Mechanism of CsPbBr <sub>3</sub> Perovskite Nanocrystals Produced via a<br>Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.                        | 2.0               | 12            |
| 38 | Phase-Dependent Shell Growth and Optical Properties of ZnSe/ZnS Core/Shell Nanorods. Chemistry of Materials, 2021, 33, 3413-3427.                                                                              | 6.7               | 12            |
| 39 | Ligand-assisted reduction and reprecipitation synthesis of highly luminescent metal nanoclusters.<br>Nanoscale Advances, 2019, 1, 834-839.                                                                     | 4.6               | 11            |
| 40 | Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Single omponent<br>Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQq0 ( | 0 <b>0</b> 4gBT / | Oværlock 10 1 |
| 41 | Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie,<br>2020, 132, 10083-10088.                                                                                | 2.0               | 8             |

| 42 | Highly Luminescent Solid‣tate Carbon Dots Embedded in a Boric Acid Matrix. ChemistrySelect, 2020, 5,<br>13969-13973.                                                                                | 1.5 | 8 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 43 | Identification of Molecular Fluorophore as a Component of Carbon Dots able to Induce Gelation in a<br>Fluorescent Multivalent-Metal-Ion-Free Alginate Hydrogel. Scientific Reports, 2019, 9, 15080. | 3.3 | 7 |
| 44 | Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral<br>Oligomeric Silsesquioxane Matrix. Journal of Physical Chemistry C, 2021, 125, 15094-15102.               | 3.1 | 4 |
| 45 | Constructing a Spectral Down Converter to Enhance Cu(In,Ga)Se <sub>2</sub> Solar Cell<br>Performance Using Yttrium Aluminum Garnet:Ce <sup>3+</sup> Ceramics. Solar Rrl, 2020, 4, 1900518.          | 5.8 | 3 |

Chemical Sensing: Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection (Part.) Tj ETQq0 0 0 rgBT /Overbock 10 Tf ! 46