
## Jidong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784822/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Online optimization of boiler operation based on information integration and case-based reasoning.<br>International Journal of Green Energy, 2023, 20, 15-27.                                                                                           | 3.8 | 1         |
| 2  | Modeling and optimization of the NO <sub>X</sub> generation characteristics of the coal-fired boiler<br>based on interpretable machine learning algorithm. International Journal of Green Energy, 2022, 19,<br>529-543.                                 | 3.8 | 7         |
| 3  | Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2022, 37, 139-147.                                                                   | 3.0 | 1         |
| 4  | An image auxiliary method for laser-induced breakdown spectroscopy analysis of coal particle flow.<br>Journal of Analytical Atomic Spectrometry, 2022, 37, 1126-1133.                                                                                   | 3.0 | 7         |
| 5  | Repeatability improvement in laser induced plasma emission of particle flow by aberration-diminished focusing. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 175, 106014.                                                                     | 2.9 | 13        |
| 6  | Application of laser induced breakdown spectroscopy for direct and quick determination of fuel property of woody biomass pellets. Renewable Energy, 2021, 164, 1204-1214.                                                                               | 8.9 | 9         |
| 7  | Comparison of the matrix effect in laser induced breakdown spectroscopy analysis of coal particle flow and coal pellets. Journal of Analytical Atomic Spectrometry, 2021, 36, 2473-2479.                                                                | 3.0 | 9         |
| 8  | Temporally and spatially resolved study of laser-induced plasma generated on coals with different volatile matter contents. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 180, 106195.                                                        | 2.9 | 13        |
| 9  | Optimizing the quantitative analysis of solid biomass fuel properties using laser induced breakdown spectroscopy (LIBS) coupled with a kernel partial least squares (KPLS) model. Analytical Methods, 2021, 13, 5467-5477.                              | 2.7 | 4         |
| 10 | Evaluation of heavy metal element detection in municipal solid waste incineration fly ash based on<br>LIBS sensor. Waste Management, 2020, 102, 492-498.                                                                                                | 7.4 | 24        |
| 11 | Optimizing analysis of coal property using laser-induced breakdown and near-infrared reflectance spectroscopies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118492.                                              | 3.9 | 24        |
| 12 | Improving the LIBS Quantitative Analysis of Unburned Carbon in Fly Ash Based on the Optimization of<br>Reference Value. Energy & Fuels, 2020, 34, 6483-6489.                                                                                            | 5.1 | 4         |
| 13 | Improved measurement in quantitative analysis of coal properties using laser induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2020, 35, 810-818.                                                                              | 3.0 | 21        |
| 14 | Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation<br>Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92, 7003-7010.                                            | 6.5 | 25        |
| 15 | Improved measurement of the calorific value of pulverized coal particle flow by laser-induced breakdown spectroscopy (LIBS). Analytical Methods, 2019, 11, 4471-4480.                                                                                   | 2.7 | 26        |
| 16 | Feasibility study of gross calorific value, carbon content, volatile matter content and ash content of solid biomass fuel using laser-induced breakdown spectroscopy. Fuel, 2019, 258, 116150.                                                          | 6.4 | 27        |
| 17 | Surface-enhanced laser-induced breakdown spectroscopy utilizing metallic target for direct analysis of particle flow. Journal of Analytical Atomic Spectrometry, 2019, 34, 172-179.                                                                     | 3.0 | 16        |
| 18 | A comparative model combining carbon atomic and molecular emissions based on partial least squares<br>and support vector regression correction for carbon analysis in coal using LIBS. Journal of<br>Analytical Atomic Spectrometry, 2019, 34, 480-488. | 3.0 | 32        |

Jidong Lu

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Combining laser-induced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties. Journal of Analytical Atomic Spectrometry, 2019, 34, 347-355.                                       | 3.0 | 39        |
| 20 | A hybrid model combining wavelet transform and recursive feature elimination for running state<br>evaluation of heat-resistant steel using laser-induced breakdown spectroscopy. Analyst, The, 2019, 144,<br>3736-3745.             | 3.5 | 18        |
| 21 | Temporal-spatial resolved laser-induced breakdown spectroscopy of T91 steel of different aging grades. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 151, 1-11.                                                           | 2.9 | 5         |
| 22 | Quantitative Analysis of Calorific Value of Coal Based on Spectral Preprocessing by Laser-Induced<br>Breakdown Spectroscopy (LIBS). Energy & Fuels, 2018, 32, 24-32.                                                                | 5.1 | 52        |
| 23 | Estimation of the mechanical properties of steel <i>via</i> LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR). Journal of Analytical Atomic Spectrometry, 2018, 33, 720-729.              | 3.0 | 27        |
| 24 | Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 140, 35-43.                                        | 2.9 | 16        |
| 25 | Feature selection of laser-induced breakdown spectroscopy data for steel aging estimation.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 150, 49-58.                                                                   | 2.9 | 30        |
| 26 | Analysis of spectral properties for coal with different volatile contents by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 249-255.                                            | 2.9 | 18        |
| 27 | Identifying laser-induced plasma emission spectra of particles in a gas–solid flow based on the<br>standard deviation of intensity across an emission line. Journal of Analytical Atomic Spectrometry,<br>2018, 33, 1676-1682.      | 3.0 | 17        |
| 28 | Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal.<br>Journal of Analytical Atomic Spectrometry, 2017, 32, 766-772.                                                                 | 3.0 | 46        |
| 29 | Rapid Determination of the Gross Calorific Value of Coal Using Laser-Induced Breakdown<br>Spectroscopy Coupled with Artificial Neural Networks and Genetic Algorithm. Energy & Fuels,<br>2017, 31, 3849-3855.                       | 5.1 | 42        |
| 30 | Characterization of Fly Ash Laser-Induced Plasma for Improving the On-line Measurement of Unburned<br>Carbon in Gas–Solid Flow. Energy & Fuels, 2017, 31, 4681-4686.                                                                | 5.1 | 17        |
| 31 | Study on the Alkali Release from the Combustion Products of a Single Coal Particle by Laser Ignition.<br>Energy & Fuels, 2017, 31, 4452-4460.                                                                                       | 5.1 | 14        |
| 32 | Correction of C–Fe line interference for the measurement of unburned carbon in fly ash by LIBS.<br>Journal of Analytical Atomic Spectrometry, 2016, 31, 2418-2426.                                                                  | 3.0 | 22        |
| 33 | Rapidly Measuring Unburned Carbon in Fly Ash Using Molecular CN by Laser-Induced Breakdown<br>Spectroscopy. Energy & Fuels, 2015, 29, 1257-1263.                                                                                    | 5.1 | 33        |
| 34 | Correlation between aging grade of T91 steel and spectral characteristics of the laser-induced plasma.<br>Applied Surface Science, 2015, 346, 302-310.                                                                              | 6.1 | 20        |
| 35 | Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation<br>inductively coupled plasma time of flight mass spectrometry. Spectrochimica Acta, Part B: Atomic<br>Spectroscopy, 2015, 109, 44-50. | 2.9 | 33        |
| 36 | Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 110, 146-150.                                         | 2.9 | 25        |

Jidong Lu

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 62-69. | 2.9 | 53        |
| 38 | Experimental Study of Laser-Induced Breakdown Spectroscopy (LIBS) for Direct Analysis of Coal<br>Particle Flow. Applied Spectroscopy, 2014, 68, 672-679.                                          | 2.2 | 29        |
| 39 | Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation<br>Molecular Isotopic Spectrometry. Analytical Chemistry, 2013, 85, 2899-2906.                       | 6.5 | 69        |
| 40 | Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method. Journal of Analytical Atomic Spectrometry, 2012, 27, 473.                   | 3.0 | 49        |
| 41 | Application of LIBS for direct determination of volatile matter content in coal. Journal of Analytical<br>Atomic Spectrometry, 2011, 26, 2183.                                                    | 3.0 | 74        |
| 42 | Extracting Coal Ash Content from Laser-Induced Breakdown Spectroscopy (LIBS) Spectra by<br>Multivariate Analysis. Applied Spectroscopy, 2011, 65, 1197-1201.                                      | 2.2 | 72        |
| 43 | Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases. Applied Surface Science, 2011, 257, 3103-3110.                                          | 6.1 | 45        |
| 44 | Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression. Journal of Analytical Atomic Spectrometry, 2010, 25, 1733.       | 3.0 | 55        |
| 45 | Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy. Optics and Laser Technology, 2009, 41, 907-913.                                         | 4.6 | 82        |