Stefan Stenfelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784761/publications.pdf

Version: 2024-02-01

81900 102487 4,754 103 39 66 citations g-index h-index papers 105 105 105 2038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances. Frontiers in Systems Neuroscience, 2013, 7, 31.	2.5	647
2	Bone-Conducted Sound: Physiological and Clinical Aspects. Otology and Neurotology, 2005, 26, 1245-1261.	1.3	320
3	Transmission properties of bone conducted sound: Measurements in cadaver heads. Journal of the Acoustical Society of America, 2005, 118, 2373-2391.	1.1	205
4	Factors contributing to bone conduction: The outer ear. Journal of the Acoustical Society of America, 2003, 113, 902-913.	1.1	130
5	Working Memory Capacity and Visual–Verbal Cognitive Load Modulate Auditory–Sensory Gating in the Brainstem: Toward a Unified View of Attention. Journal of Cognitive Neuroscience, 2012, 24, 2147-2154.	2.3	126
6	Vibration characteristics of bone conducted sound <i>in vitro</i> . Journal of the Acoustical Society of America, 2000, 107, 422-431.	1.1	125
7	Factors contributing to bone conduction: The middle ear. Journal of the Acoustical Society of America, 2002, 111, 947-959.	1.1	125
8	Transcranial Attenuation of Bone-Conducted Sound When Stimulation Is at the Mastoid and at the Bone Conduction Hearing Aid Position. Otology and Neurotology, 2012, 33, 105-114.	1.3	119
9	Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. Journal of the Acoustical Society of America, 2004, 115, 797-812.	1.1	117
10	Acoustic and Physiologic Aspects of Bone Conduction Hearing. Advances in Oto-Rhino-Laryngology, 2011, 71, 10-21.	1.6	115
11	Three-Dimensional Stapes Footplate Motion in Human Temporal Bones. Audiology and Neuro-Otology, 2003, 8, 140-152.	1.3	113
12	Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hearing Research, 2003, 181, 131-143.	2.0	105
13	A model of the occlusion effect with bone-conducted stimulation. International Journal of Audiology, 2007, 46, 595-608.	1.7	105
14	Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. International Journal of Audiology, 2008, 47, 761-769.	1.7	101
15	The Signalâ€Cognition interface: Interactions between degraded auditory signals and cognitive processes. Scandinavian Journal of Psychology, 2009, 50, 385-393.	1.5	98
16	Inner ear contribution to bone conduction hearing in the human. Hearing Research, 2015, 329, 41-51.	2.0	91
17	Bilateral fitting of BAHAs and BAHA® fitted in unilateral deaf persons: Acoustical aspects Adaptación bilateral de BAHA y adaptación de BAHA en sorderas unilaterales: Aspectos acústicos. International Journal of Audiology, 2005, 44, 178-189.	1.7	82
18	Transmission of bone conducted sound $\hat{a}\in$ Correlation between hearing perception and cochlear vibration. Hearing Research, 2013, 306, 11-20.	2.0	79

#	Article	IF	Citations
19	Bilateral Boneâ€Anchored Hearing Aids (BAHAs): An Audiometric Evaluation. Laryngoscope, 2004, 114, 77-84.	2.0	78
20	Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study. International Journal of Audiology, 2016, 55, 623-642.	1.7	77
21	Percutaneous Versus Transcutaneous Bone Conduction Implant System. Otology and Neurotology, 2008, 29, 1132-1139.	1.3	71
22	A novel bone conduction implant (BCI): Engineering aspects and pre-clinical studies. International Journal of Audiology, 2010, 49, 203-215.	1.7	71
23	Model predictions for bone conduction perception in the human. Hearing Research, 2016, 340, 135-143.	2.0	64
24	Implications for Contralateral Bone-Conducted Transmission as Measured by Cochlear Vibrations. Otology and Neurotology, 2011, 32, 192-198.	1.3	62
25	Hearing loss impacts neural alpha oscillations under adverse listening conditions. Frontiers in Psychology, 2015, 6, 177.	2.1	62
26	Middle ear ossicles motion at hearing thresholds with air conduction and bone conduction stimulation. Journal of the Acoustical Society of America, 2006, 119, 2848-2858.	1.1	60
27	Round window membrane motion with air conduction and bone conduction stimulation. Hearing Research, 2004, 198, 10-24.	2.0	57
28	Hearing one's own voice during phoneme vocalization—Transmission by air and bone conduction. Journal of the Acoustical Society of America, 2010, 128, 751-762.	1.1	55
29	Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure. Hearing Research, 2013, 299, 19-28.	2.0	55
30	Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research, 2013, 56, 1120-1132.	1.6	53
31	Consensus Statement. Ear and Hearing, 2013, 34, 78s-79s.	2.1	47
32	Linearity of sound transmission through the human skull <i>in</i> â€^ <i>vivo</i> . Journal of the Acoustical Society of America, 1996, 99, 2239-2243.	1.1	45
33	An Overview of Wideband Immittance Measurements Techniques and Terminology. Ear and Hearing, 2013, 34, 9s-16s.	2.1	45
34	Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations. Journal of the Acoustical Society of America, 2007, 121, 1576-1587.	1.1	44
35	Seeing the talker's face supports executive processing of speech in steady state noise. Frontiers in Systems Neuroscience, 2013, 7, 96.	2.5	44
36	The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound. Journal of the Acoustical Society of America, 2016, 140, 1635-1651.	1.1	43

#	Article	lF	CITATIONS
37	Air versus bone conduction: an equal loudness investigation. Hearing Research, 2002, 167, 1-12.	2.0	42
38	Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience, 2014, 6, 96.	3.4	40
39	Influence of stimulation position on the sensitivity for bone conduction hearing aids without skin penetration. International Journal of Audiology, 2016, 55, 439-446.	1.7	40
40	Sensitivity to bone-conducted sound: excitation of the mastoid vs the teeth. Scandinavian Audiology, 1999, 28, 190-198.	0.5	39
41	Prediction of Conductive Hearing Loss Using Wideband Acoustic Immittance. Ear and Hearing, 2013, 34, 54s-59s.	2.1	37
42	Sound wave propagation on the human skull surface with bone conduction stimulation. Hearing Research, 2017, 355, 1-13.	2.0	37
43	Bilateral versus unilateral cochlear implants in children: Speech recognition, sound localization, and parental reports. International Journal of Audiology, 2012, 51, 817-832.	1.7	36
44	Binaural hearing ability with mastoid applied bilateral bone conduction stimulation in normal hearing subjects. Journal of the Acoustical Society of America, 2013, 134, 481-493.	1.1	33
45	Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids. Trends in Hearing, 2016, 20, 233121651667038.	1.3	31
46	Simultaneous cancellation of air and bone conduction tones at two frequencies: Extension of the famous experiment by von Békésy. Hearing Research, 2007, 225, 105-116.	2.0	29
47	A longitudinal study of the bilateral benefit in children with bilateral cochlear implants. International Journal of Audiology, 2015, 54, 77-88.	1.7	29
48	Effect of metabolic presbyacusis on cochlear responses: A simulation approach using a physiologically-based model. Journal of the Acoustical Society of America, 2013, 134, 2833-2851.	1.1	28
49	Interaction between osseous and non-osseous vibratory stimulation of the human cadaveric head. Hearing Research, 2016, 340, 153-160.	2.0	28
50	Investigation of Mechanisms in Bone Conduction Hyperacusis With Third Window Pathologies Based on Model Predictions. Frontiers in Neurology, 2020, 11, 966.	2.4	27
51	A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ. Nature Communications, 2018, 9, 4175.	12.8	25
52	Binaural Hearing Ability With Bilateral Bone Conduction Stimulation in Subjects With Normal Hearing: Implications for Bone Conduction Hearing Aids. Ear and Hearing, 2016, 37, 690-702.	2.1	24
53	Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss. Otology and Neurotology, 2022, 43, 513-529.	1.3	22
54	Factors That Introduce Intrasubject Variability Into Ear-Canal Absorbance Measurements. Ear and Hearing, 2013, 34, 60s-64s.	2.1	20

#	Article	IF	CITATIONS
55	Sounds perceived as annoying by hearing-aid users in their daily soundscape. International Journal of Audiology, 2014, 53, 259-269.	1.7	19
56	Intracranial Pressure and Promontory Vibration With Soft Tissue Stimulation in Cadaveric Human Whole Heads. Otology and Neurotology, 2016, 37, e384-e390.	1.3	19
57	Simulation of the power transmission of bone-conducted sound in a finite-element model of the human head. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1741-1755.	2.8	19
58	Assessing listening effort by measuring short-term memory storage and processing of speech in noise. Speech, Language and Hearing, 2014, 17, 123-132.	1.0	18
59	Three-dimensional thermal stress analysis of the re-oxidized Ni-YSZ anode functional layer in solid oxide fuel cells. Journal of Alloys and Compounds, 2018, 752, 148-154.	5.5	18
60	Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation. Hearing Research, 2016, 340, 43-49.	2.0	16
61	Characteristics of Bone-Conduction Devices Simulated in a Finite-Element Model of a Whole Human Head. Trends in Hearing, 2019, 23, 233121651983605.	1.3	16
62	Acoustic Role of the Buttress and Posterior Incudal Ligament in Human Temporal Bones. Otolaryngology - Head and Neck Surgery, 2001, 124, 274-278.	1.9	15
63	The outer ear pathway during hearing by bone conduction. Hearing Research, 2022, 421, 108388.	2.0	15
64	Towards understanding the specifics of cochlear hearing loss: A modelling approach. International Journal of Audiology, 2008, 47, S10-S15.	1.7	13
65	Bone Conduction and the Middle Ear. Springer Handbook of Auditory Research, 2013, , 135-169.	0.7	13
66	Loudness and annoyance of disturbing sounds – perception by normal hearing subjects. International Journal of Audiology, 2017, 56, 775-783.	1.7	13
67	Adult Hearing Screening: Follow-Up and Outcomes1. American Journal of Audiology, 2013, 22, 183-185.	1.2	12
68	A bone-anchored hearing aid for patients with pure sensorineural hearing impairment: A pilot study. Scandinavian Audiology, 2000, 29, 175-185.	0.5	11
69	Seeing the Talker's Face Improves Free Recall of Speech for Young Adults With Normal Hearing but Not Older Adults With Hearing Loss. Journal of Speech, Language, and Hearing Research, 2016, 59, 590-599.	1.6	10
70	Consequences of Mastoidectomy on Bone Conducted Sound Based on Simulations in a Whole Human Head. Otology and Neurotology, 2020, 41, e1158-e1166.	1.3	10
71	Optimal position of a new bone conduction implant. Cochlear Implants International, 2011, 12, S136-S138.	1.2	9
72	Review of Whole Head Experimental Cochlear Promontory Vibration with Bone Conduction Stimulation and Investigation of Experimental Setup Effects. Trends in Hearing, 2021, 25, 233121652110527.	1.3	9

#	Article	IF	Citations
73	A Miniaturized Artificial Mastoid Using a Skull Simulator. Scandinavian Audiology, 1998, 27, 67-76.	0.5	8
74	Perceived Voice Quality and Voice-Related Problems Among Older Adults With Hearing Impairments. Journal of Speech, Language, and Hearing Research, 2018, 61, 2168-2178.	1.6	8
75	Simulation of soft tissue stimulation–Indication of a skull bone vibration mechanism in bone conduction hearing. Hearing Research, 2022, 418, 108471.	2.0	8
76	Loudness functions with air and bone conduction stimulation inÂnormal-hearing subjects using a categorical loudness scaling procedure. Hearing Research, 2013, 301, 85-92.	2.0	7
77	Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs. Scientific Reports, 2021, 11, 2855.	3.3	7
78	Influence of ear canal occlusion and static pressure difference on bone conduction thresholds: Implications for mechanisms of bone conduction. International Journal of Audiology, 2005, 44, 302-306.	1.7	6
79	A Three-Dimensional Finite-Element Model of a Human Dry Skull for Bone-Conduction Hearing. BioMed Research International, 2014, 2014, 1-9.	1.9	6
80	Development of a finite element model of a human head including auditory periphery for understanding of bone-conducted hearing. Hearing Research, 2022, 421, 108337.	2.0	6
81	Output performance of the novel active transcutaneous bone conduction implant Sentio at different stimulation sites. Hearing Research, 2022, 421, 108369.	2.0	6
82	Alternative Ear-Canal Measures Related to Absorbance. Ear and Hearing, 2013, 34, 72s-77s.	2.1	5
83	A Physiological Signal Transmission Model to be Used for Specific Diagnosis of Cochlear Impairments. , 2011, , .		4
84	Memory performance on the Auditory Inference Span Test is independent of background noise type for young adults with normal hearing at high speech intelligibility. Frontiers in Psychology, 2014, 5, 1490.	2.1	4
85	Towards a semantic representation for multi-scale finite element biosimulation experiments., 2013,,.		3
86	Bone conduction hearing in the Guinea pig and the effect of artificially induced middle ear lesions. Hearing Research, 2019, 379, 21-30.	2.0	3
87	TIME DELAY OF ACOUSTIC TRANSMISSION IN HUMAN MIDDLE EAR. , 2004, , .		3
88	Perception of One's Own Voice After Hearing-Aid Fitting for Naive Hearing-Aid Users and Hearing-Aid Refitting for Experienced Hearing-Aid Users. Trends in Hearing, 2020, 24, 233121652093246.	1.3	2
89	Unilateral versus bilateral bone-anchored hearing aids (BAHAs). Cochlear Implants International, 2005, 6, 79-81.	1.2	1
90	Physiological aspects regarding bilateral fitting of BAHAs. Cochlear Implants International, 2005, 6, 83-86.	1.2	1

#	Article	IF	CITATIONS
91	TRANSCRANIAL TRANSMISSION OF BONE CONDUCTED SOUND MEASURED ACOUSTICALLY AND PSYCHOACOUSTICALLY., 2007, , .		1
92	A possible third window for bone conducted hearing: Cochlear aqueduct vs. vestibular aqueduct. AIP Conference Proceedings, $2015, \ldots$	0.4	1
93	How do the medial olivocochlear efferents influence the biomechanics of the outer hair cells and thereby the cochlear amplifier? Simulation results. AIP Conference Proceedings, 2015, , .	0.4	1
94	Measurements of bone conduction auditory brainstem response with the new audiometric bone conduction transducer Radioear B81. International Journal of Audiology, 2018, 57, 577-583.	1.7	1
95	Hearing Aid Transducers. Springer Handbook of Auditory Research, 2016, , 59-92.	0.7	1
96	The Effects of Noiseâ€induced Hair Cell Lesions on Cochlear Electromechanical Responses: A Computational Approach Using a Biophysical Model. International Journal for Numerical Methods in Biomedical Engineering, 2022, , e3582.	2.1	1
97	OVERVIEW AND RECENT ADVANCES IN BONE CONDUCTION PHYSIOLOGY., 2007,,.		O
98	SIFEM project: Semantic infostructure interlinking an open source finite element tool and libraries with a model repository for the multi-scale modelling of the inner-ear., 2013 ,,.		0
99	Cochlear boundary motion during bone conduction stimulation: Implications for inertial and compressional excitation of the cochlea. AIP Conference Proceedings, 2015, , .	0.4	O
100	Simulation of bone-conducted sound transmission in a three-dimensional finite-element model of a human skull. AIP Conference Proceedings, 2015, , .	0.4	0
101	Inner ear boundary motion during bone conduction stimulation $\hat{a} \in \H$ Indications for inner ear compression and fluid inertia. , 2015, , .		0
102	BONE CONDUCTION AND BONE ANCHORED HEARING DEVICES. , 2004, , .		0
103	IW2 Human hearing from a biomedical engineering point of view(International Workshop on) Tj ETQq1 1 0.7843 Bioengineering Conference Annual Meeting of BED/JSME, 2007, 2006.19, 3-4.	614 rgBT / 0.0	Overlock 10 T O