Cecilia Sahlgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784557/publications.pdf

Version: 2024-02-01

		87723	62479
80	6,798	38	80
papers	citations	h-index	g-index
83	83	83	10517
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering tissue morphogenesis: taking it up a Notch. Trends in Biotechnology, 2022, 40, 945-957.	4.9	7
2	GIT1 protects against breast cancer growth through negative regulation of Notch. Nature Communications, 2022, 13, 1537.	5.8	5
3	In Situ Coupled Electrochemicalâ€Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides. Advanced Materials Interfaces, 2022, 9, .	1.9	6
4	Optogenetic control of NOTCH1 signaling. Cell Communication and Signaling, 2022, 20, 67.	2.7	6
5	From structural resilience to cell specification — Intermediate filaments as regulators of cell fate. FASEB Journal, 2021, 35, e21182.	0.2	8
6	PIM-induced phosphorylation of Notch3 promotes breast cancer tumorigenicity in a CSL-independent fashion. Journal of Biological Chemistry, 2021, 296, 100593.	1.6	9
7	Sensitization of MCF7 Cells with High Notch1 Activity by Cisplatin and Histone Deacetylase Inhibitors Applied Together. International Journal of Molecular Sciences, 2021, 22, 5184.	1.8	5
8	Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes. Nanomaterials, 2021, 11, 14.	1.9	9
9	Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 1-9.	2.0	28
10	In vitro Targetability Validation of Peptide-Functionalized Mesoporous Silica Nanoparticles in the Presence of Serum Proteins. Frontiers in Chemistry, 2020, 8, 603616.	1.8	2
11	iGIST—A Kinetic Bioassay for Pertussis Toxin Based on Its Effect on Inhibitory GPCR Signaling. ACS Sensors, 2020, 5, 3438-3448.	4.0	12
12	Rational evaluation of human serum albumin coated mesoporous silica nanoparticles for xenogenic-free stem cell therapies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124945.	2.3	5
13	Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nature Biomedical Engineering, 2020, 4, 875-888.	11.6	21
14	Computational Characterization of the Dish-In-A-Dish, A High Yield Culture Platform for Endothelial Shear Stress Studies on the Orbital Shaker. Micromachines, 2020, 11, 552.	1.4	13
15	Notch in mechanotransduction – from molecular mechanosensitivity to tissue mechanostasis. Journal of Cell Science, 2020, 133, .	1.2	37
16	Decoding the PTM-switchboard of Notch. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118507.	1.9	25
17	Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Scientific Reports, 2019, 9, 12415.	1.6	62
18	A Supramolecular Platform for the Introduction of Fc-Fusion Bioactive Proteins on Biomaterial Surfaces. ACS Applied Polymer Materials, 2019, 1, 2044-2054.	2.0	10

#	Article	IF	CITATIONS
19	Influence of the Assembly State on the Functionality of a Supramolecular Jagged1-Mimicking Peptide Additive. ACS Omega, 2019, 4, 8178-8187.	1.6	9
20	Nestin Regulates Neurogenesis in Mice Through Notch Signaling From Astrocytes to Neural Stem Cells. Cerebral Cortex, 2019, 29, 4050-4066.	1.6	46
21	Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3682-E3691.	3.3	51
22	Sumoylation of Notch1 represses its target gene expression during cell stress. Cell Death and Differentiation, 2018, 25, 600-615.	5.0	20
23	Mapping of the three-dimensional lymphatic microvasculature in bladder tumours using light-sheet microscopy. British Journal of Cancer, 2018, 118, 995-999.	2.9	24
24	A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab on A Chip, 2018, 18, 1607-1620.	3.1	88
25	Notch signaling promotes a HIF2α-driven hypoxic response in multiple tumor cell types. Oncogene, 2018, 37, 6083-6095.	2.6	20
26	Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We Striking Home?. Nanotheranostics, 2018, 2, 320-346.	2.7	8
27	Keratins regulate colonic epithelial cell differentiation through the Notch1 signalling pathway. Cell Death and Differentiation, 2017, 24, 984-996.	5.0	43
28	Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4574-E4581.	3.3	86
29	Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nature Biomedical Engineering, 2017, 1, 796-806.	11.6	131
30	Spheroid three-dimensional culture enhances Notch signaling in cardiac progenitor cells. MRS Communications, 2017, 7, 496-501.	0.8	6
31	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	3.9	38
32	Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Scientific Reports, 2017, 7, 8423.	1.6	44
33	Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells International, 2017, 2017, 1-20.	1.2	39
34	Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget, 2016, 7, 43220-43238.	0.8	49
35	Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier. PLoS ONE, 2016, 11, e0160705.	1,1	74
36	Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles. International Journal of Nanomedicine, 2016, 11, 299.	3.3	31

#	Article	IF	CITATIONS
37	Prolonged Dye Release from Mesoporous Silica-Based Imaging Probes Facilitates Long-Term Optical Tracking of Cell Populations In Vivo. Small, 2016, 12, 1578-1592.	5.2	26
38	Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying ¹³ -secretase Inhibitors. Molecular Therapy, 2016, 24, 926-936.	3.7	91
39	Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integrative Biology (United Kingdom), 2016, 8, 991-1001.	0.6	21
40	Loss of CSL Unlocks a Hypoxic Response and Enhanced Tumor Growth Potential in Breast Cancer Cells. Stem Cell Reports, 2016, 6, 643-651.	2.3	31
41	Mesoporous silica nanoparticles in tissue engineering – a perspective. Nanomedicine, 2016, 11, 391-402.	1.7	83
42	Genetically-encoded tools for cAMP probing and modulation in living systems. Frontiers in Pharmacology, 2015, 6, 196.	1.6	25
43	Mesoporous silica particle-PLA–PANI hybrid scaffolds for cell-directed intracellular drug delivery and tissue vascularization. Nanoscale, 2015, 7, 14434-14443.	2.8	37
44	Novel, fast-processed crystalline and amorphous manganese oxide nanoparticles for stem cell labeling. Inorganic Chemistry Frontiers, 2015, 2, 640-648.	3.0	6
45	Decoding breast cancer tissue–stroma interactions using species-specific sequencing. Breast Cancer Research, 2015, 17, 109.	2.2	11
46	Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres. Biomaterials Science, 2014, 2, 1750-1760.	2.6	14
47	PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner. Cell Research, 2014, 24, 433-450.	5.7	37
48	Preparation, characterization, and preliminary biocompatibility evaluation of particulate spin-coated mesoporous silica films. Microporous and Mesoporous Materials, 2014, 188, 203-209.	2.2	18
49	Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation. Nanoscale, 2014, 6, 1490-1498.	2.8	41
50	Active targeting of mesoporous silica drug carriers enhances \hat{I}^3 -secretase inhibitor efficacy in an <i>in vivo</i> model for breast cancer. Nanomedicine, 2014, 9, 971-987.	1.7	30
51	Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKK $\hat{1}$ ±/IKK $\hat{1}$ 2. Oncogene, 2013, 32, 4892-4902.	2.6	121
52	Coreâ€"shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale, 2013, 5, 3713.	2.8	111
53	Mesoporous silica nanoparticles in medicineâ€"Recent advances. Advanced Drug Delivery Reviews, 2013, 65, 689-702.	6.6	585
54	Astrocytes Negatively Regulate Neurogenesis Through the Jagged1â€Mediated Notch Pathway. Stem Cells, 2012, 30, 2320-2329.	1.4	123

#	Article	IF	Citations
55	Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 2012, 7, 358.	3.1	61
56	Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine, 2012, 7, 111-120.	1.7	233
57	Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer. Molecular Therapy, 2011, 19, 1538-1546.	3.7	197
58	Nestin as a regulator of Cdk5 in differentiating myoblasts. Molecular Biology of the Cell, 2011, 22, 1539-1549.	0.9	42
59	Multifunctional Mesoporous Silica Nanoparticles for Combined Therapeutic, Diagnostic and Targeted Action in Cancer Treatment. Current Drug Targets, 2011, 12, 1166-1186.	1.0	156
60	Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18814-18819.	3.3	112
61	Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells. Experimental Cell Research, 2010, 316, 1610-1624.	1.2	30
62	Cancerâ€Cellâ€Specific Induction of Apoptosis Using Mesoporous Silica Nanoparticles as Drugâ€Delivery Vectors. Small, 2010, 6, 1234-1241.	5.2	163
63	Protein Kinase Cζ Regulates Cdk5/p25 Signaling during Myogenesis. Molecular Biology of the Cell, 2010, 21, 1423-1434.	0.9	17
64	Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2010, 2, 1870.	2.8	504
65	Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Developmental Biology, 2010, 348, 153-166.	0.9	57
66	Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. Journal of Materials Chemistry, 2010, 20, 2707.	6.7	89
67	Targeted Intracellular Delivery of Hydrophobic Agents using Mesoporous Hybrid Silica Nanoparticles as Carrier Systems. Nano Letters, 2009, 9, 3308-3311.	4.5	209
68	Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. ACS Nano, 2009, 3, 197-206.	7. 3	477
69	Notch Signaling Regulates Platelet-Derived Growth Factor Receptor- \hat{l}^2 Expression in Vascular Smooth Muscle Cells. Circulation Research, 2008, 102, 1483-1491.	2.0	161
70	Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6392-6397.	3.3	726
71	Notch signaling and its integration with other signaling mechanisms. Regenerative Medicine, 2006, 1 , $195 ext{-}205$.	0.8	25
72	A nestin scaffold links $Cdk5/p35$ signaling to oxidant-induced cell death. EMBO Journal, 2006, 25, 4808-4819.	3.5	150

#	Article	lF	CITATION
73	High levels of Notch signaling down-regulate Numb and Numblike. Journal of Cell Biology, 2006, 175, 535-540.	2.3	76
74	Cdk5 Regulates the Organization of Nestin and Its Association with p35. Molecular and Cellular Biology, 2003, 23, 5090-5106.	1.1	131
75	The Expression of Intermediate Filament protein Nestin as Related to Vimentin and Desmin in Regenerating Skeletal Muscle. Journal of Neuropathology and Experimental Neurology, 2001, 60, 588-597.	0.9	144
76	Mitotic Reorganization of the Intermediate Filament Protein Nestin Involves Phosphorylation by cdc2 Kinase. Journal of Biological Chemistry, 2001, 276, 16456-16463.	1.6	105
77	Intermediate Filament Protein Partnership in Astrocytes. Journal of Biological Chemistry, 1999, 274, 23996-24006.	1.6	313
78	Specific and Innervation-Regulated Expression of the Intermediate Filament Protein Nestin at Neuromuscular and Myotendinous Junctions in Skeletal Muscle. American Journal of Pathology, 1999, 154, 591-600.	1.9	87
79	[42] Strategies to assess phosphoprotein phosphatase and protein kinase-mediated regulation of the cytoskeleton. Methods in Enzymology, 1998, 298, 542-569.	0.4	14
80	The nervous system of Tricladida. I. Neuroanatomy of Procerodes littoralis (Maricola, Procerodidae): An immunocytochemical study. Invertebrate Neuroscience, 1995, 1, 113-122.	1.8	27