Martin J Boulanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878452/publications.pdf

Version: 2024-02-01

331670 377865 1,389 50 21 34 citations h-index g-index papers 51 51 51 1866 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plasticity and redundancy among AMA–RON pairs ensure host cell entry of Toxoplasma parasites. Nature Communications, 2014, 5, 4098.	12.8	138
2	A ribosome-inactivating protein in a $\langle i \rangle$ Drosophila $\langle i \rangle$ defensive symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 350-355.	7.1	101
3	Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10311-10316.	7.1	92
4	Structural and Biochemical Characterization of Plasmodium falciparum 12 (Pf12) Reveals a Unique Interdomain Organization and the Potential for an Antiparallel Arrangement with Pf41. Journal of Biological Chemistry, 2013, 288, 12805-12817.	3.4	63
5	Bifunctional Role of the <i>Treponema pallidum </i> Extracellular Matrix Binding Adhesin Tp0751. Infection and Immunity, 2011, 79, 1386-1398.	2.2	58
6	Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nature Microbiology, 2017, 2, 1358-1366.	13.3	54
7	Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. Npj Vaccines, 2018, 3, 26.	6.0	54
8	<i>Plasmodium falciparum</i> evades immunity of anopheline mosquitoes by interacting with a Pfs47 midgut receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2597-2605.	7.1	52
9	Systems-Based Analysis of the <i>Sarcocystis neurona</i> Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle. MBio, 2015, 6, .	4.1	49
10	A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nature Communications, 2019, 10, 4041.	12.8	47
11	Structural Characterization of Apical Membrane Antigen 1 (AMA1) from Toxoplasma gondii. Journal of Biological Chemistry, 2010, 285, 15644-15652.	3.4	46
12	Structural and Functional Characterization of SporoSAG. Journal of Biological Chemistry, 2010, 285, 12063-12070.	3.4	37
13	Post-translational Modification of LipL32 during Leptospira interrogans Infection. PLoS Neglected Tropical Diseases, 2014, 8, e3280.	3.0	37
14	Babesia divergensandNeospora caninumapical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion. Protein Science, 2013, 22, 114-127.	7.6	35
15	Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMAâ€"RON2 pair. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 398-403.	7.1	33
16	A Conserved Apicomplexan Microneme Protein Contributes to Toxoplasma gondii Invasion and Virulence. Infection and Immunity, 2014, 82, 4358-4368.	2.2	32
17	Structural Characterization of the Bradyzoite Surface Antigen (BSR4) from Toxoplasma gondii, a Unique Addition to the Surface Antigen Glycoprotein 1-related Superfamily. Journal of Biological Chemistry, 2009, 284, 9192-9198.	3.4	31
18	The Structure of Treponema pallidum Tp0751 (Pallilysin) Reveals a Non-canonical Lipocalin Fold That Mediates Adhesion to Extracellular Matrix Components and Interactions with Host Cells. PLoS Pathogens, 2016, 12, e1005919.	4.7	29

#	Article	IF	CITATIONS
19	Structural determinants of Rab11 activation by the guanine nucleotide exchange factor SH3BP5. Nature Communications, 2018, 9, 3772.	12.8	29
20	Host Mitochondrial Association Evolved in the Human Parasite <i>Toxoplasma gondii</i> via Neofunctionalization of a Gene Duplicate. Genetics, 2016, 203, 283-298.	2.9	27
21	Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from $\langle i \rangle$ Toxoplasma gondii $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10548-E10555.	7.1	27
22	The Structure of Plasmodium falciparum Blood-Stage 6-Cys Protein Pf41 Reveals an Unexpected Intra-Domain Insertion Required for Pf12 Coordination. PLoS ONE, 2015, 10, e0139407.	2.5	23
23	Structural and Biochemical Characterization of a Novel Aldehyde Dehydrogenase Encoded by the Benzoate Oxidation Pathway in Burkholderia xenovorans LB400. Journal of Molecular Biology, 2008, 379, 597-608.	4.2	22
24	Characterization of the c10orf76â€Pl4KB complex and its necessity for Golgi Pl4P levels and enterovirus replication. EMBO Reports, 2020, 21, e48441.	4.5	21
25	Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex. Journal of Biological Chemistry, 2017, 292, 19469-19477.	3.4	20
26	A <i>Toxoplasma gondii</i> locus required for the direct manipulation of host mitochondria has maintained multiple ancestral functions. Molecular Microbiology, 2018, 108, 519-535.	2.5	20
27	Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association. MSphere, 2017, 2, .	2.9	19
28	<i>Toxoplasma gondii</i> association with host mitochondria requires key mitochondrial protein import machinery. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
29	Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLoS ONE, 2016, 11, e0144764.	2.5	17
30	An Extended Surface Loop on Toxoplasma gondii Apical Membrane Antigen 1 (AMA1) Governs Ligand Binding Selectivity. PLoS ONE, 2015, 10, e0126206.	2.5	16
31	Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Structure, 2020, 28, 145-156.e5.	3.3	16
32	Apicomplexan parasite adhesins: novel strategies for targeting host cell carbohydrates. Current Opinion in Structural Biology, 2010, 20, 551-559.	5.7	15
33	Structure of the micronemal protein 2 A/I domain from <i>Toxoplasma gondii</i> . Protein Science, 2010, 19, 1985-1990.	7.6	15
34	The Inner Membrane Complex Sub-compartment Proteins Critical for Replication of the Apicomplexan Parasite Toxoplasma gondii Adopt a Pleckstrin Homology Fold. Journal of Biological Chemistry, 2014, 289, 13962-13973.	3.4	14
35	Structural and Biophysical Characterization of BoxC from Burkholderia xenovorans LB400. Journal of Biological Chemistry, 2009, 284, 16377-16385.	3.4	12
36	Structural and Functional Divergence of the Aldolase Fold in Toxoplasma gondii. Journal of Molecular Biology, 2015, 427, 840-852.	4.2	11

#	Article	lF	CITATIONS
37	The Structure of Treponema pallidum Tp0624 Reveals a Modular Assembly of Divergently Functionalized and Previously Uncharacterized Domains. PLoS ONE, 2016, 11, e0166274.	2.5	10
38	Investigating Terephthalate Biodegradation: Structural Characterization of a Putative Decarboxylating cis-Dihydrodiol Dehydrogenase. Journal of Molecular Biology, 2012, 423, 284-293.	4.2	7
39	The Shear Stress of Host Cell Invasion: Exploring the Role of Biomolecular Complexes. PLoS Pathogens, 2015, 11, e1004539.	4.7	7
40	Structural and functional characterization of a triple mutant form of S100A7 defective for Jab1 binding. Protein Science, 2009, 18, 2615-2623.	7.6	6
41	Parasitic nematode fatty acid- and retinol-binding proteins compromise host immunity by interfering with host lipid signaling pathways. PLoS Pathogens, 2021, 17, e1010027.	4.7	6
42	Conformational analysis of peramivir reveals critical differences between free and enzyme-bound states. MedChemComm, 2014, 5, 1483-1488.	3.4	5
43	Structural characterization of <i>Treponema pallidum</i> Tp0225 reveals an unexpected leucine-rich repeat architecture. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 489-495.	0.8	5
44	The FAR protein family of parasitic nematodes. PLoS Pathogens, 2022, 18, e1010424.	4.7	4
45	Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from <i>Burkholderia xenovorans</i>) LB400. Protein Science, 2011, 20, 1048-1059.	7.6	3
46	Characterization of Calflagin, a Flagellar Calcium-Binding Protein from Trypanosoma congolense. PLoS Neglected Tropical Diseases, 2016, 10, e0004510.	3.0	3
47	The structure of <i>Plasmodium falciparum</i> 3D7_0606800 reveals a biâ€lobed architecture that supports reâ€annotation as a Venus Flytrap protein. Protein Science, 2017, 26, 1878-1885.	7.6	2
48	Structural characterization reveals a novel bilobed architecture for the ectodomains of insect stage expressed <i>Trypanosoma brucei</i> PSSAâ€2 and <i>Trypanosoma congolense</i> ISA. Protein Science, 2016, 25, 2297-2302.	7.6	1
49	O16.4â€Structural similarity oftreponema pallidumprotein Tp0225 with human toll-like receptor 2. , 2019, , .		0
50	Monoclonal antibody 7H2.2 binds the C-terminus of the cancer-oocyte antigen SAS1B through the hydrophilic face of a conserved amphipathic helix corresponding to one of only two regions predicted to be ordered. Acta Crystallographica Section D: Structural Biology, 2022, 78, 623-632.	2.3	0