
Cristian CiracÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784215/publications.pdf Version: 2024-02-01

Ο ΠΟΤΙΛΝΙ Ο ΙΡΛΟΑ-

#	Article	IF	CITATIONS
1	Numerical Calculation of the Light Propagation in Tapered Optical Fibers for Optical Neural Interfaces. Journal of Lightwave Technology, 2022, 40, 196-205.	2.7	3
2	Fluorescence quenching in plasmonic dimers due to electron tunneling. Nanophotonics, 2022, .	2.9	7
3	Holographic Manipulation of Nanostructured Fiber Optics Enables Spatiallyâ€Resolved, Reconfigurable Optical Control of Plasmonic Local Field Enhancement and SERS. Small, 2022, 18, e2200975.	5.2	3
4	Free electron harmonic generation in heavily doped semiconductors: the role of the materials properties. EPJ Applied Metamaterials, 2022, 9, 13.	0.8	3
5	Second-harmonic generation from singular metasurfaces. Physical Review B, 2022, 105, .	1.1	5
6	Second-harmonic generation in plasmonic waveguides with nonlocal response and electron spill-out. Physical Review B, 2022, 106, .	1.1	5
7	A nested hybridizable discontinuous Galerkin method for computing second-harmonic generation in three-dimensional metallic nanostructures. Journal of Computational Physics, 2021, 429, 110000.	1.9	7
8	Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics. Physical Review X, 2021, 11, .	2.8	29
9	Free electron nonlinearities in heavily doped semiconductors plasmonics. Physical Review B, 2021, 103,	1.1	13
10	Free electron cascaded third-harmonic generation. , 2021, , .		1
11	Influence of the electron spill-out and nonlocality on gap plasmons in the limit of vanishing gaps. Physical Review B, 2021, 104, .	1.1	4
12	Mode-Matching Enhancement of Second-Harmonic Generation with Plasmonic Nanopatch Antennas. ACS Photonics, 2020, 7, 3333-3340.	3.2	29
13	Enhancing second-harmonic generation with electron spill-out at metallic surfaces. Communications Physics, 2020, 3, .	2.0	13
14	Impact of Surface Roughness in Nanogap Plasmonic Systems. ACS Photonics, 2020, 7, 908-913.	3.2	25
15	Terahertz and infrared nonlocality and field saturation in extreme-scale nanoslits. Optics Express, 2020, 28, 8701.	1.7	4
16	Label-free biomechanical nanosensor based on LSPR for biological applications. Optical Materials Express, 2020, 10, 1264.	1.6	4
17	Plasmonic quantum effects on single-emitter strong coupling. Nanophotonics, 2019, 8, 1821-1833.	2.9	24
18	Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures. Nature Communications, 2019, 10, 4476.	5.8	26

CRISTIAN CIRACì

#	Article	IF	CITATIONS
19	Numerical Analysis of Nonlocal Optical Response of Metallic Nanoshells. Photonics, 2019, 6, 39.	0.9	19
20	Difference-frequency generation in plasmonic nanostructures: a parameter-free hydrodynamic description. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1979.	0.9	14
21	Influence of spatial dispersion on surface plasmons, nanoparticles, and grating couplers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2989.	0.9	10
22	Nanowireâ€Intensified Metalâ€Enhanced Fluorescence in Hybrid Polymerâ€Plasmonic Electrospun Filaments. Small, 2018, 14, e1800187.	5.2	13
23	Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis. Optics Express, 2018, 26, 17322.	1.7	15
24	Plasmonic Nonlocal Response Effects on Dipole Decay Dynamics in the Weak- and Strong-Coupling Regimes. Journal of Physical Chemistry C, 2017, 121, 22361-22368.	1.5	24
25	Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Physical Review B, 2017, 95, .	1.1	55
26	Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States. ACS Nano, 2016, 10, 11360-11368.	7.3	53
27	Enhancement of radiative processes in nanofibers with embedded plasmonic nanoparticles. Optics Letters, 2016, 41, 1632.	1.7	2
28	Nonlocal Plasmonic Response and Fano Resonances at Visible Frequencies in Sub-Nanometer Gap Coupling Regime. ACS Photonics, 2016, 3, 2467-2474.	3.2	11
29	Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail. Physical Review B, 2016, 93, .	1.1	122
30	Plasmonic luminescence enhancement by metal nanoparticles embedded in nanofibers. , 2016, , .		0
31	Influence of spatial dispersion in metals on the optical response of deeply subwavelength slit arrays. Physical Review B, 2016, 93, .	1.1	15
32	Third-harmonic generation in the presence of classical nonlocal effects in gap-plasmon nanostructures. Physical Review B, 2015, 91, .	1.1	38
33	Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. Optical Materials Express, 2015, 5, 2682.	1.6	20
34	Directional plasmonic nanoantennas to enhance the purcell effect. , 2015, , .		0
35	Plasmonic Nanopatch Antennas for Large Purcell Enhancement. , 2015, , .		0
36	Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1581.	0.8	35

CRISTIAN CIRACì

#	Article	IF	CITATIONS
37	Nanogap-Enhanced Infrared Spectroscopy with Template-Stripped Wafer-Scale Arrays of Buried Plasmonic Cavities. Nano Letters, 2015, 15, 107-113.	4.5	135
38	Studying the Interplay of Electric and Magnetic Resonance-Enhanced Second Harmonic Generation: Theory and Experiments. , 2015, , .		0
39	Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2601.	0.9	30
40	Second Harmonic Generation by Metamagnetics: Interplay of Electric and Magnetic Resonances. , 2014, , .		0
41	Tunable plasmonic platform for giant fluorescence enhancement. , 2014, , .		0
42	Giant fluorescence enhancement of molecules coupled to plasmonic nanoscale patch antennas. , 2014, , ,		1
43	Enhanced optical bistability with film-coupled plasmonic nanocubes. Applied Physics Letters, 2014, 104,	1.5	46
44	Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers. Applied Physics Letters, 2014, 104, 023109.	1.5	48
45	Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators. ACS Photonics, 2014, 1, 1212-1217.	3.2	112
46	Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photonics, 2014, 8, 835-840.	15.6	849
47	Control of Radiative Processes Using Tunable Plasmonic Nanopatch Antennas. Nano Letters, 2014, 14, 4797-4802.	4.5	191
48	Quasi-analytic study of scattering from optical plasmonic patch antennas. Journal of Applied Physics, 2013, 114, 163108.	1.1	31
49	Impact of nonlocal response on metallodielectric multilayers and optical patch antennas. Physical Review B, 2013, 87, .	1.1	99
50	Hydrodynamic Model for Plasmonics: A Macroscopic Approach to a Microscopic Problem. ChemPhysChem, 2013, 14, 1109-1116.	1.0	158
51	Optical time reversal with graphene. Nature Physics, 2013, 9, 393-394.	6.5	9
52	Plasmonic Waveguide Modes of Film-Coupled Metallic Nanocubes. Nano Letters, 2013, 13, 5866-5872.	4.5	238
53	Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2731.	0.9	28
54	Far-field analysis of axially symmetric three-dimensional directional cloaks. Optics Express, 2013, 21, 9397.	1.7	28

CRISTIAN CIRACÃ

#	Article	IF	CITATIONS
55	Surfaces, films, and multilayers for compact nonlinear plasmonics. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2999.	0.9	11
56	Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film. Optics Express, 2012, 20, 11005.	1.7	27
57	Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature, 2012, 492, 86-89.	13.7	639
58	Probing the Ultimate Limits of Plasmonic Enhancement. Science, 2012, 337, 1072-1074.	6.0	981
59	Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface. Physical Review B, 2012, 86, .	1.1	110
60	Origin of second-harmonic generation enhancement in optical split-ring resonators. Physical Review B, 2012, 85, .	1.1	157
61	Plasmonic Nanocomposits for Enhanced Four-Wave Mixing Generation. , 2011, , .		Ο
62	Second harmonic generation in random nanostructures. , 2010, , .		0
63	Localizing and focusing second-harmonic emission with nonlinear metamaterials. , 2010, , .		Ο
64	Sub-wavelength light localization in nanorod chain enhances second-harmonic generation. Optics Express, 2010, 18, 15377.	1.7	1
65	Second harmonic generation in a generic negative index medium. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1671.	0.9	16
66	Focusing of Second-Harmonic Signals with Nonlinear Metamaterial Lenses: A Biphotonic Microscopy Approach. Physical Review Letters, 2009, 103, 063901.	2.9	12
67	Theory of backward second-harmonic localization in nonlinear left-handed media. Physical Review B, 2008, 78, .	1.1	14
68	Second harmonic localization in nonlinear photonic crystals. , 2008, , .		1

Second harmonic localization in nonlinear photonic crystals. , 2008, , . 68