
Arunchander Asokan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon, 2015, 93, 130-142.	5.4	130
2	Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. Journal of Saudi Chemical Society, 2017, 21, 487-494.	2.4	87
3	Platinum nanoparticles supported on nitrogen and fluorine co-doped graphite nanofibers as an excellent and durable oxygen reduction catalyst for polymer electrolyte fuel cells. Carbon, 2016, 107, 667-679.	5.4	77
4	Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F848-F855.	1.3	76
5	Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 14650-14664.	2.8	61
6	Simultaneous co-doping of N and S by a facile in-situ polymerization of 6-N,N-dibutylamine-1,3,5-triazine-2,4-dithiol on graphene framework: An efficient and durable oxygen reduction catalyst in alkaline medium. Carbon, 2017, 118, 531-544.	5.4	38
7	Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. Energy & Fuels, 2021, 35, 11761-11799.	2.5	37
8	Synthesis of flower-like molybdenum sulfide/graphene hybrid as an efficient oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Journal of Power Sources, 2017, 353, 104-114.	4.0	34
9	Selfâ€Assembled Manganese Sulfide Nanostructures on Graphene as an Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. ChemElectroChem, 2017, 4, 1544-1553.	1.7	24
10	Dendrimer confined Pt nanoparticles: electro-catalytic activity towards the oxygen reduction reaction and its application in polymer electrolyte membrane fuel cells. RSC Advances, 2015, 5, 75218-75228.	1.7	23
11	Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells. Journal of Power Sources, 2015, 297, 379-387.	4.0	22
12	MnO–nitrogen doped graphene as a durable non-precious hybrid catalyst for the oxygen reduction reaction in anion exchange membrane fuel cells. RSC Advances, 2016, 6, 95590-95600.	1.7	21
13	Origin of charge storage in cobalt oxide - Anchored graphene nanocomposites. Carbon, 2017, 125, 168-179.	5.4	19
14	Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis. Energies, 2021, 14, 1320.	1.6	14
15	Bio-derived carbon as an efficient supporting electrocatalyst for the oxygen reduction reaction. Journal of Physics and Chemistry of Solids, 2019, 124, 305-311.	1.9	13
16	Insights Into the Effect of Nickel Doping on ZIFâ€Derived Oxygen Reduction Catalysts for Zincâ^'Air Batteries. ChemElectroChem, 2019, 6, 1213-1224.	1.7	11
17	Carbon Nanofibers Encapsulated Nickelâ€Molybdenum Nanoparticles as Hydrogen Evolution Catalysts for Aqueous Znâ^'CO 2 System. ChemNanoMat, 2020, 6, 937-946.	1.5	9
18	Insights into the effect of structure-directing agents on structural properties of mesoporous carbon for polymer electrolyte fuel cells. Bulletin of Materials Science, 2015, 38, 451-459.	0.8	5

#	Article	IF	CITATIONS
19	Chloride-Tolerant, Inexpensive Fe/N/C Catalysts for Desalination Fuel Cell Cathodes. ACS Applied Energy Materials, 2022, 5, 1743-1754.	2.5	5