
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. Journal of the American Chemical Society, 2022, 144, 6326-6342.	13.7	27
2	The role of PI3KÎ ³ in the immune system: new insights and translational implications. Nature Reviews Immunology, 2022, 22, 687-700.	22.7	22
3	Second-generation tricyclic pyrimido-pyrrolo-oxazine mTOR inhibitor with predicted blood–brain barrier permeability. RSC Medicinal Chemistry, 2021, 12, 579-583.	3.9	6
4	Disease-related mutations in PI3KÎ ³ disrupt regulatory C-terminal dynamics and reveal a path to selective inhibitors. ELife, 2021, 10, .	6.0	28
5	Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem, 2021, 16, 2744-2759.	3.2	12
6	Suppression of caspase 8 activity by a coronin 1–PI3Kδ pathway promotes T cell survival independently of TCR and IL-7 signaling. Science Signaling, 2021, 14, eabj0057.	3.6	2
7	Targeting Phosphoinositide 3-Kinase – Five Decades of Chemical Space Exploration. Chimia, 2021, 75, 1037.	0.6	3
8	Brain-penetrant PQR620 mTOR and PQR530 PI3K/mTOR inhibitor reduce huntingtin levels in cell models of HD. Neuropharmacology, 2020, 162, 107812.	4.1	12
9	Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology, 2020, 180, 108297.	4.1	23
10	PI3Kγ Regulatory Protein p84 Determines Mast Cell Sensitivity to Ras Inhibition—Moving Towards Cell Specific PI3K Targeting?. Frontiers in Immunology, 2020, 11, 585070.	4.8	10
11	4-(Difluoromethyl)-5-(4-((3 <i>R</i> ,5 <i>S</i>)-3,5-dimethylmorpholino)-6-((<i>R</i>)-3-methylmorpholino)-1,3,5- (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. Journal of Medicinal Chemistry, 2020, 63, 13595-13617.	-triazin-2-y 6.4	l)pyridin-2-ar 17
12	Abstract 665: Discovery and preclinical characterization of PQR626: A potent, orally available, and brain-penetrant mTOR inhibitor for the treatment of tuberous sclerosis complex. , 2020, , .		0
13	A Conformational Restriction Strategy for the Identification of a Highly Selective Pyrimido-pyrrolo-oxazine mTOR Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 8609-8630.	6.4	24
14	Preclinical Development of PQR514, a Highly Potent PI3K Inhibitor Bearing a Difluoromethyl–Pyrimidine Moiety. ACS Medicinal Chemistry Letters, 2019, 10, 1473-1479.	2.8	28
15	Scalable, Economical, and Practical Synthesis of 4-(Difluoromethyl)pyridin-2-amine, a Key Intermediate for Lipid Kinase Inhibitors. Organic Process Research and Development, 2019, 23, 2416-2424.	2.7	8
16	Human PI3KÎ ³ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nature Communications, 2019, 10, 4364.	12.8	51
17	(<i>S</i>)-4-(Difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530), a Potent, Orally Bioavailable, and Brain-Penetrable Dual Inhibitor of Class I PI3K and mTOR Kinase. Journal of Medicinal Chemistry, 2019, 62, 6241-6261.	6.4	45
18	The Novel TORC1/2 Kinase Inhibitor PQR620 Has Anti-Tumor Activity in Lymphomas as a Single Agent and in Combination with Venetoclas, Cancers, 2019, 11, 775.	3.7	14

MATTHIAS P WYMANN

#	Article	IF	CITATIONS
19	New molecular and therapeutic insights into canine diffuse large B-cell lymphoma elucidates the role of the dog as a model for human disease. Haematologica, 2019, 104, e256-e259.	3.5	43
20	A class of highly selective inhibitors bind to an active state of PI3Kγ. Nature Chemical Biology, 2019, 15, 348-357.	8.0	42
21	PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy. Clinical Cancer Research, 2018, 24, 120-129.	7.0	92
22	Discovery and Preclinical Characterization of 5-[4,6-Bis({3-oxa-8-azabicyclo[3.2.1]octan-8-yl})-1,3,5-triazin-2-yl]-4-(difluoromethyl)pyridin-2-amine (PQR620), a Highly Potent and Selective mTORC1/2 Inhibitor for Cancer and Neurological Disorders. Journal of Medicinal Chemistry, 2018, 61, 10084-10105.	6.4	62
23	The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.	4.1	64
24	Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 2017, 8, 14683.	12.8	88
25	5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology. Journal of Medicinal Chemistry, 2017, 60, 7524-7538.	6.4	109
26	PI3Kγ activity in leukocytes promotes adipose tissue inflammation and early-onset insulin resistance during obesity. Science Signaling, 2017, 10, .	3.6	29
27	Abstract 153: Tricyclic fused pyrimidinopyrrolo-oxazines reveal conformational preferences of morpholine for PI3K hinge region binding. , 2017, , .		0
28	Abstract 140: Discovery and biological evaluation of PQR530, a highly potent dual pan-PI3K/mTORC1/2 inhibitor. , 2017, , .		1
29	Abstract 159: Pharmacological characterization of the selective, orally bioavailable, potent dual PI3K/mTORC1/2 inhibitor PQR530. , 2017, , .		1
30	Central role for phosphoinositide-3-kinase gamma/delta dependent signalling in eosinophilic pulmonary inflammation driven by innate lymphoid cells. , 2017, , .		0
31	Vascular Remodeling in Cardiovascular Disease231Absence of PI3Kg leads to increased reendothelialization in mice through modulation of IP-10 secretion.232DPP4 inhibition mediates vascular protection in acute and chronic vascular injury233Effects of transforming growth factor beta signalling on smooth muscle cell phenotype in the angiotensin II-induced abdominal aortic	3.8	0
32	Abstract 393A: Pharmacological characterization of the selective, orally bioavailable, potent mTORC1/2 inhibitor PQR620. , 2016, , .		0
33	Abstract 1364: Novel 4-(pyrimidin-2-yl)morpholines targeting the colchicine-binding site of tubulin. , 2016, , .		0
34	Abstract 1336: Structure-activity relationship studies, synthesis, and biological evaluation of PQR620, a highly potent and selective mTORC1/2 inhibitor. , 2016, , .		0
35	0377 : Phosphoinositide 3-kinase gamma: a potential clinical target in the prevention of vascular damages inuced by arterial injury. Archives of Cardiovascular Diseases Supplements, 2015, 7, 134.	0.0	0
36	Abstract 2652: Pre-clinical activity and mechanism of action of the novel dual PI3K/mTOR inhibitor PQR309 in B-cell lymphomas. , 2015, , .		1

3

#	Article	IF	CITATIONS
37	Abstract 2664: PQR309: Structure-based design, synthesis and biological evaluation of a novel, selective, dual pan-PI3K/mTOR inhibitor. Cancer Research, 2015, 75, 2664-2664.	0.9	3
38	Abstract 4514: PQR309: A potent, brain-penetrant, dual pan-PI3K/mTOR inhibitor with excellent oral bioavailability and tolerability. Cancer Research, 2015, 75, 4514-4514.	0.9	3
39	Abstract 671: BKM120-mediated G2 arrest: Structural and functional segregation of off-target action and PI3K inhibition. , 2015, , .		1
40	Elastin-derived peptides potentiate atherosclerosis through the immune Neu1–PI3Kγ pathway. Cardiovascular Research, 2014, 102, 118-127.	3.8	91
41	Targeting PI3KÎ ³ activity decreases vascular trauma-induced intimal hyperplasia through modulation of the Th1 response. Journal of Experimental Medicine, 2014, 211, 1779-1792.	8.5	28
42	Cellâ€Permeant and Photocleavable Chemical Inducer of Dimerization. Angewandte Chemie - International Edition, 2014, 53, 4717-4720.	13.8	51
43	Phosphoinositide 3-kinase Î ³ mediates microglial phagocytosis via lipid kinase-independent control of cAMP. Neuroscience, 2013, 233, 44-53.	2.3	30
44	Chemical Development of Intracellular Protein Heterodimerizers. Chemistry and Biology, 2013, 20, 549-557.	6.0	49
45	Transient targeting of phosphoinositide 3-kinase acts as a roadblock in mast cells' route to allergy. Journal of Allergy and Clinical Immunology, 2013, 132, 959-968.	2.9	29
46	Membrane dynamics in physiology and disease. FEBS Journal, 2013, 280, 2729-2729.	4.7	1
47	Inhibition of phosphoinositide 3â€kinase γ attenuates inflammation, obesity, and cardiovascular risk factors. Annals of the New York Academy of Sciences, 2013, 1280, 44-47.	3.8	21
48	PKCÎ ² Phosphorylates PI3KÎ ³ to Activate It and Release It from GPCR Control. PLoS Biology, 2013, 11, e1001587.	5.6	62
49	PI3K p110Î ³ Deletion Attenuates Murine Atherosclerosis by Reducing Macrophage Proliferation but Not Polarization or Apoptosis in Lesions. PLoS ONE, 2013, 8, e72674.	2.5	17
50	Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation. PLoS ONE, 2013, 8, e58054.	2.5	42
51	PI3Ks—Drug Targets in Inflammation and Cancer. Sub-Cellular Biochemistry, 2012, 58, 111-181.	2.4	9
52	Murine bone marrow-derived macrophages differentiated with GM-CSF become foam cells by PI3KÎ ³ -dependent fluid-phase pinocytosis of native LDL. Journal of Lipid Research, 2012, 53, 34-42.	4.2	39
53	C-C motif chemokine CCL3 and canonical neutrophil attractants promote neutrophil extravasation through common and distinct mechanisms. Blood, 2012, 120, 880-890.	1.4	52
54	Genetic ablation of PI3Kγ results in defective ILâ€17RA signalling in T lymphocytes and increased ILâ€17 levels. European Journal of Immunology, 2012, 42, 3394-3404.	2.9	14

#	Article	IF	CITATIONS
55	Key role of PI3KÎ ³ in monocyte chemotactic proteinâ€lâ€mediated amplification of PDCFâ€induced aortic smooth muscle cell migration. British Journal of Pharmacology, 2012, 166, 1643-1653.	5.4	29
56	The Chemical Biology of Phosphoinositide 3â€Kinases. ChemBioChem, 2012, 13, 2022-2035.	2.6	35
57	Luminal decoration of blood vessels by activated perivasal mast cells in allergic rhinitis. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 510-520.	5.7	2
58	Integrating Cardiac PIP3 and cAMP Signaling through a PKA Anchoring Function of p110γ. Molecular Cell, 2011, 42, 84-95.	9.7	174
59	Neutral not a loss: phosphoinositides beyond the head group. Nature Methods, 2011, 8, 219-220.	19.0	3
60	PI3KÎ ³ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E854-63.	7.1	55
61	Plasmin Inhibitors Prevent Leukocyte Accumulation and Remodeling Events in the Postischemic Microvasculature. PLoS ONE, 2011, 6, e17229.	2.5	54
62	Targeting PI3K in neuroblastoma. Journal of Cancer Research and Clinical Oncology, 2010, 136, 1881-1890.	2.5	19
63	Essential Role of the p110β Subunit of Phosphoinositide 3-OH Kinase in Male Fertility. Molecular Biology of the Cell, 2010, 21, 704-711.	2.1	58
64	Targeting Melanoma with Dual Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitors. Molecular Cancer Research, 2009, 7, 601-613.	3.4	105
65	Ras is an indispensable coregulator of the class I _B phosphoinositide 3-kinase p87/p110γ. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20312-20317.	7.1	84
66	Leukocyte transmigration is modulated by chemokineâ€mediated PI3Kγâ€dependent phosphorylation of vimentin. European Journal of Immunology, 2009, 39, 1136-1146.	2.9	59
67	Essential role of phosphoinositide 3â€kinase gamma in eosinophil chemotaxis within acute pulmonary inflammation. Immunology, 2009, 126, 413-422.	4.4	33
68	Mal connects TLR2 to PI3Kinase activation and phagocyte polarization. EMBO Journal, 2009, 28, 2018-2027.	7.8	103
69	Mast cell degranulation requires activation of PI3K Î ³ by PKC Î ² . Cytokine, 2009, 48, 41.	3.2	0
70	PI3KÎ ³ Adaptor Subunits Define Coupling to Degranulation and Cell Motility by Distinct PtdIns(3,4,5)P ₃ Pools in Mast Cells. Science Signaling, 2009, 2, ra27.	3.6	80
71	Targeting phosphoinositide 3-kinase—Moving towards therapy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 159-185.	2.3	491
72	Lipid signalling in disease. Nature Reviews Molecular Cell Biology, 2008, 9, 162-176.	37.0	1,091

#	Article	IF	CITATIONS
73	The Forkhead Transcription Factor FOXO3a Increases Phosphoinositide-3 Kinase/Akt Activity in Drug-Resistant Leukemic Cells through Induction of PIK3CA Expression. Molecular and Cellular Biology, 2008, 28, 5886-5898.	2.3	150
74	Genetic and Pharmacological Targeting of Phosphoinositide 3-Kinase-Î ³ Reduces Atherosclerosis and Favors Plaque Stability by Modulating Inflammatory Processes. Circulation, 2008, 117, 1310-1317.	1.6	131
75	Phosphoinositide 3-Kinase p110β Activity: Key Role in Metabolism and Mammary Gland Cancer but Not Development. Science Signaling, 2008, 1, ra3.	3.6	219
76	Phosphoinositide 3â€kinase gamma; participates in T cell receptorâ€induced T cell activation FASEB Journal, 2008, 22, 1064.12.	0.5	4
77	A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate–mediated egress. Journal of Experimental Medicine, 2007, 204, 497-510.	8.5	144
78	Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation. Journal of Experimental Medicine, 2007, 204, 2977-2987.	8.5	86
79	Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase γ. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14354-14359.	7.1	57
80	Inactivation of PI3Kγ and PI3Kδ distorts T-cell development and causes multiple organ inflammation. Blood, 2007, 110, 2940-2947.	1.4	113
81	GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Neuropharmacology, 2007, 52, 146-155.	4.1	44
82	PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biology, 2007, 9, 86-91.	10.3	233
83	Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation. Journal of Cell Biology, 2007, 179, i9-i9.	5.2	0
84	Lack of phosphoinositide 3-kinase-Î ³ attenuates ventilator-induced lung injury*. Critical Care Medicine, 2006, 34, 134-141.	0.9	62
85	Class IB-Phosphatidylinositol 3-Kinase (PI3K) Deficiency Ameliorates IA-PI3K-Induced Systemic Lupus but Not T Cell Invasion. Journal of Immunology, 2006, 176, 589-593.	0.8	78
86	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	1.4	274
87	Blockade of PI3KÎ ³ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nature Medicine, 2005, 11, 936-943.	30.7	711
88	Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Current Opinion in Cell Biology, 2005, 17, 141-149.	5.4	198
89	Airway inflammation: chemokine-induced neutrophilia and the class?I phosphoinositide 3-kinases. European Journal of Immunology, 2005, 35, 1283-1291.	2.9	70
90	Cutting Edge: T Cell Development Requires the Combined Activities of the p110γ and p110δ Catalytic Isoforms of Phosphatidylinositol 3-Kinase. Journal of Immunology, 2005, 175, 2783-2787.	0.8	142

#	Article	IF	CITATIONS
91	Susi, a Negative Regulator of Drosophila PI3-Kinase. Developmental Cell, 2005, 8, 817-827.	7.0	24
92	Phosphoinositide 3-kinase Î ³ controls autonomic regulation of the mouse heart through Gi-independent downregulation of cAMP level. FEBS Letters, 2005, 579, 133-140.	2.8	20
93	Defective dendritic cell migration and activation of adaptive immunity in PI3KÎ ³ -deficient mice. EMBO Journal, 2004, 23, 3505-3515.	7.8	146
94	Phosphoinositide 3-kinase Î ³ mediates Jun kinase activation via its lipid-kinase activity. Advances in Enzyme Regulation, 2004, 44, 299-308.	2.6	1
95	PI3KÎ ³ Modulates the Cardiac Response to Chronic Pressure Overload by Distinct Kinase-Dependent and -Independent Effects. Cell, 2004, 118, 375-387.	28.9	446
96	The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Letters, 2004, 577, 539-544.	2.8	95
97	Ablation of Phosphoinositide 3-Kinase-Î ³ Reduces the Severity of Acute Pancreatitis. American Journal of Pathology, 2004, 165, 2003-2011.	3.8	49
98	Requirement for PI 3-kinase Î ³ in macrophage migration to MCP-1 and CSF-1. Experimental Cell Research, 2003, 290, 120-131.	2.6	94
99	Phosphoinositide 3-kinase signalling – which way to target?. Trends in Pharmacological Sciences, 2003, 24, 366-376.	8.7	374
100	Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons. Neuron, 2003, 38, 611-624.	8.1	317
101	A Selective Role for Phosphatidylinositol 3,4,5-Trisphosphate in the Gi-dependent Activation of Platelet Rap1B. Journal of Biological Chemistry, 2003, 278, 131-138.	3.4	92
102	Phosphatidylinositol 3-Kinase Regulates the CD4/CD8 T Cell Differentiation Ratio. Journal of Immunology, 2003, 170, 4475-4482.	0.8	79
103	Phosphoinositide 3-kinase \hat{I}^3 -deficient hearts are protected from the PAF-dependent depression of cardiac contractility. Cardiovascular Research, 2003, 60, 242-249.	3.8	20
104	Phosphoinositide 3-kinase \hat{I}^3 : a key modulator in inflammation and allergy. Biochemical Society Transactions, 2003, 31, 275-280.	3.4	125
105	Living with Lethal PIP3 Levels: Viability of Flies Lacking PTEN Restored by a PH Domain Mutation in Akt/PKB. Science, 2002, 295, 2088-2091.	12.6	190
106	Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Human Molecular Genetics, 2002, 11, 1569-1579.	2.9	124
107	Regulation of Myocardial Contractility and Cell Size by Distinct PI3K-PTEN Signaling Pathways. Cell, 2002, 110, 737-749.	28.9	545
108	Phosphoinositide 3-Kinase Î ³ Is an Essential Amplifier of Mast Cell Function. Immunity, 2002, 16, 441-451.	14.3	292

#	Article	IF	CITATIONS
109	Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO Journal, 2002, 21, 1673-1683.	7.8	80
110	The <i>Drosophila</i> insulin/IGF receptor controls growth and size by modulating PtdIns <i>P</i> 3 levels. Development (Cambridge), 2002, 129, 4103-4109.	2.5	142
111	The ATP-binding site of brain phosphatidylinositol 4-kinase PI4K230 as revealed by 5′-p-fluorosulfonylbenzoyladenosine. International Journal of Biochemistry and Cell Biology, 2001, 33, 249-259.	2.8	11
112	Protein adsorption on topographically nanostructured titanium. Surface Science, 2001, 474, L180-L184.	1.9	62
113	Weakening link to colorectal cancer?. Nature, 2001, 413, 796-796.	27.8	41
114	Resistance to thromboembolism in PI3Kγâ€deficient mice. FASEB Journal, 2001, 15, 2019-2021.	0.5	201
115	Activation Loop Sequences Confer Substrate Specificity to Phosphoinositide 3-Kinase α (Pl3Kα). Journal of Biological Chemistry, 2001, 276, 21544-21554.	3.4	86
116	Lipids on the move: phosphoinositide 3-kinases in leukocyte function. Trends in Immunology, 2000, 21, 260-264.	7.5	122
117	Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3â€kinaseâ€, Rhoâ€, and Racâ€dependent signaling pathways. FASEB Journal, 2000, 14, 2329-2338.	0.5	230
118	Analysis of the murine phosphoinositide 3-kinase \hat{I}^3 gene. Gene, 2000, 256, 69-81.	2.2	16
119	Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine. Molecular Cell, 2000, 6, 909-919.	9.7	1,102
120	Central Role for G Protein-Coupled Phosphoinositide 3-Kinase Î ³ in Inflammation. Science, 2000, 287, 1049-1053.	12.6	1,187
121	Phosphoinositide 3-kinase Signalling — no lipids. Biochemical Society Transactions, 1999, 27, A74-A74.	3.4	0
122	Microquantification of Cellular andin VitroF-Actin by Rhodamine Phalloidin Fluorescence Enhancement. Analytical Biochemistry, 1998, 264, 185-190.	2.4	19
123	Structure and function of phosphoinositide 3-kinases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 127-150.	2.4	582
124	Bifurcation of Lipid and Protein Kinase Signals of PI3K to the Protein Kinases PKB and MAPK. , 1998, 282, 293-296.		288
125	The Ras/Rac1/Cdc42/SEK/JNK/c-Jun Cascade Is a Key Pathway by Which Agonists Stimulate DNA Synthesis in Primary Cultures of Rat Hepatocytes. Molecular Biology of the Cell, 1998, 9, 561-573.	2.1	127
126	Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase <i>î³</i> : structure–activity analysis and interactions with wortmannin. Biochemical Journal, 1997, 324, 489-495.	3.7	100

#	Article	IF	CITATIONS
127	Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4960-4964.	7.1	201
128	N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist Journal of Cell Biology, 1993, 121, 1281-1289.	5.2	46
129	Shape changes, exocytosis, and cytosolic free calcium changes in stimulated human eosinophils Journal of Clinical Investigation, 1991, 87, 2012-2017.	8.2	106
130	Turning on the respiratory burst. Trends in Biochemical Sciences, 1990, 15, 69-72.	7.5	197
131	Respiratory burst oscillations in human neutrophils and their correlation with fluctuations in apparent cell shape. Journal of Biological Chemistry, 1989, 264, 15829-34.	3.4	51
132	Increased breakdown of phosphatidylinositol 4,5-bisphosphate is not an initiating factor for actin assembly in human neutrophils. Journal of Biological Chemistry, 1988, 263, 17385-9.	3.4	44
133	Oscillatory motion in human neutrophils responding to chemotactic stimuli. Biochemical and Biophysical Research Communications, 1987, 147, 361-368.	2.1	27
134	Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst. Analytical Biochemistry, 1987, 165, 371-378.	2.4	145
135	The onset of the respiratory burst in human neutrophils. Real-time studies of H2O2 formation reveal a rapid agonist-induced transduction process. Journal of Biological Chemistry, 1987, 262, 12048-53.	3.4	76