Junmin Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8783918/publications.pdf Version: 2024-02-01

IIINMIN XIIE

#	Article	IF	CITATIONS
1	Defect Engineering of Oxygenâ€Đeficient Manganese Oxide to Achieve Highâ€Performing Aqueous Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1803815.	10.2	504
2	Ultrasmall Fe ₃ O ₄ Nanoparticle/MoS ₂ Nanosheet Composites with Superior Performances for Lithium Ion Batteries. Small, 2014, 10, 1536-1543.	5.2	257
3	Defect Engineering in Manganeseâ€Based Oxides for Aqueous Rechargeable Zincâ€ion Batteries: A Review. Advanced Energy Materials, 2020, 10, 2001769.	10.2	249
4	Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 5006.	6.7	224
5	Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. Journal of Materials Chemistry, 2012, 22, 8235.	6.7	208
6	Synthesis of ZnO Nanoparticles with Tunable Emission Colors and Their Cell Labeling Applications. Chemistry of Materials, 2010, 22, 3383-3388.	3.2	204
7	Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor. Advanced Energy Materials, 2018, 8, 1702630.	10.2	201
8	Fe ₃ O ₄ Nanoparticles Embedded in Uniform Mesoporous Carbon Spheres for Superior Highâ€Rate Battery Applications. Advanced Functional Materials, 2014, 24, 319-326.	7.8	165
9	Integrated Synthesis of Nitrogen-Doped Mesoporous Carbon from Melamine Resins with Superior Performance in Supercapacitors. Journal of Physical Chemistry C, 2014, 118, 2507-2517.	1.5	163
10	Monodisperse silicananoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chemical Communications, 2008, , 694-696.	2.2	160
11	Mechanochemical Synthesis of Lead Zirconate Titanate from Mixed Oxides. Journal of the American Ceramic Society, 1999, 82, 1687-1692.	1.9	154
12	Synthesis of Zn-Doped AgInS ₂ Nanocrystals and Their Fluorescence Properties. Journal of Physical Chemistry C, 2012, 116, 9769-9773.	1.5	151
13	Flexible Solidâ€&tate Supercapacitor Based on Grapheneâ€based Hybrid Films. Advanced Functional Materials, 2014, 24, 7495-7502.	7.8	151
14	Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. Journal of Materials Chemistry, 2003, 13, 1475.	6.7	144
15	Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids. Journal of Materials Chemistry, 2004, 14, 2978-2987.	6.7	144
16	PLGA/mesoporous silica hybrid structure for controlled drug release. Journal of Controlled Release, 2004, 98, 209-217.	4.8	141
17	Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy, 2017, 33, 445-452.	8.2	131
18	Activating Basal Planes and Sâ€Terminated Edges of MoS ₂ toward More Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1604943.	7.8	131

#	Article	IF	CITATIONS
19	Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors. Nano-Micro Letters, 2020, 12, 98.	14.4	129
20	Synthesis of Magnetite Nanooctahedra and Their Magnetic Field-Induced Two-/Three-Dimensional Superstructure. Chemistry of Materials, 2010, 22, 3183-3191.	3.2	128
21	All-inorganic perovskite CsPb(Br/l) ₃ nanorods for optoelectronic application. Nanoscale, 2016, 8, 15158-15161.	2.8	123
22	Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nature Communications, 2020, 11, 4647.	5.8	117
23	Graphene oxide based fluorescent nanocomposites for cellular imaging. Journal of Materials Chemistry B, 2013, 1, 512-521.	2.9	115
24	Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. , 2022, 1, 51-87.		114
25	Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. Nanoscale, 2012, 4, 7250.	2.8	112
26	Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites. Applied Physics Letters, 2003, 82, 2691-2693.	1.5	109
27	Heterometallic Seedâ€Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heatâ€Resistant Zinc Batteries. Advanced Functional Materials, 2021, 31, 2101607.	7.8	109
28	One-step synthesis of hollow porous Fe3O4 beads–reduced graphene oxide composites with superior battery performance. Journal of Materials Chemistry, 2012, 22, 17656.	6.7	104
29	Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy, 2015, 12, 250-257.	8.2	104
30	Nanostructured magnetic nanocomposites as MRI contrast agents. Journal of Materials Chemistry B, 2015, 3, 2241-2276.	2.9	104
31	Recent Development of Mnâ€based Oxides as Zincâ€lon Battery Cathode. ChemSusChem, 2021, 14, 1634-1658.	3.6	99
32	A study of the superior electrochemical performance of 3 nm SnO ₂ nanoparticles supported by graphene. Journal of Materials Chemistry A, 2014, 2, 5688-5695.	5.2	96
33	Synthesis and characterization of AgInS2–ZnS heterodimers with tunable photoluminescence. Journal of Materials Chemistry, 2011, 21, 11239.	6.7	95
34	Ni/Mo Bimetallicâ€Oxideâ€Derived Heterointerfaceâ€Rich Sulfide Nanosheets with Coâ€Doping for Efficient Alkaline Hydrogen Evolution by Boosting Volmer Reaction. Small, 2021, 17, e2006730.	5.2	95
35	Hexagonal MoO ₃ as a zinc intercalation anode towards zinc metal-free zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 9006-9012.	5.2	91
36	Synthesis of SnO ₂ /MoS ₂ composites with different component ratios and their applications as lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 17857-17866.	5.2	90

#	Article	IF	CITATIONS
37	Controlled loading of superparamagnetic nanoparticles in fluorescent nanogels as effective T ₂ -weighted MRI contrast agents. Journal of Materials Chemistry, 2011, 21, 2310-2319.	6.7	81
38	Macroporous Silica Hollow Microspheres as Nanoparticle Collectors. Chemistry of Materials, 2009, 21, 3629-3637.	3.2	79
39	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	15.6	78
40	Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. Journal of Applied Physics, 2003, 94, 618-620.	1.1	77
41	Unraveling MoS ₂ and Transition Metal Dichalcogenides as Functional Zincâ€lon Battery Cathode: A Perspective. Small Methods, 2021, 5, e2000815.	4.6	76
42	Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route. Journal of Colloid and Interface Science, 2012, 377, 169-175.	5.0	74
43	Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale, 2013, 5, 6797.	2.8	73
44	Manipulation of Mottâ^'Schottky Ni/CeO ₂ Heterojunctions into Nâ€Doped Carbon Nanofibers for Highâ€Efficiency Electrochemical Water Splitting. Small, 2022, 18, e2106592.	5.2	73
45	Nanoscaled self-alignment of Fe ₃ O ₄ nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale, 2016, 8, 15989-15998.	2.8	71
46	Mn ₃ O ₄ /reduced graphene oxide based supercapacitor with ultra-long cycling performance. Journal of Materials Chemistry A, 2017, 5, 12762-12768.	5.2	70
47	Indole-based conjugated macromolecules as a redox-mediated electrolyte for an ultrahigh power supercapacitor. Energy and Environmental Science, 2017, 10, 2441-2449.	15.6	68
48	Three-dimensional printed cellular stainless steel as a high-activity catalytic electrode for oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 18176-18182.	5.2	68
49	Binder-free V ₂ O ₅ /CNT paper electrode for high rate performance zinc ion battery. Nanoscale, 2019, 11, 19723-19728.	2.8	68
50	Unravelling V ₆ O ₁₃ Diffusion Pathways <i>via</i> CO ₂ Modification for High-Performance Zinc Ion Battery Cathode. ACS Nano, 2021, 15, 1273-1281.	7.3	67
51	Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. Journal of Materials Chemistry, 2011, 21, 17448.	6.7	64
52	Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel. Materials and Design, 2021, 209, 109999.	3.3	64
53	Atomically Dispersed Mo Sites Anchored on Multichannel Carbon Nanofibers toward Superior Electrocatalytic Hydrogen Evolution. ACS Nano, 2021, 15, 20032-20041.	7.3	62
54	Bi2S3 for Aqueous Zn Ion Battery with Enhanced Cycle Stability. Nano-Micro Letters, 2020, 12, 8.	14.4	58

#	Article	IF	CITATIONS
55	Nanosized Barium Titanate Powder by Mechanical Activation. Journal of the American Ceramic Society, 2000, 83, 232-34.	1.9	57
56	Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics. ACS Applied Materials & Interfaces, 2017, 9, 40281-40289.	4.0	56
57	Two-photon graphene quantum dot modified Gd ₂ O ₃ nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. Nanoscale, 2018, 10, 5642-5649.	2.8	56
58	Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7469.	5.2	55
59	Few-layer MoS ₂ -anchored graphene aerogel paper for free-standing electrode materials. Nanoscale, 2016, 8, 8042-8047.	2.8	51
60	Transparent magnetic composites of ZnFe2O4 nanoparticles in silica. Journal of Applied Physics, 2001, 90, 4169-4174.	1.1	50
61	Low Li ⁺ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor. ACS Applied Materials & Interfaces, 2018, 10, 1690-1700.	4.0	49
62	Role of carbon coating in improving electrochemical performance of Li-rich Li(Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13})O ₂ cathode. RSC Advances, 2014, 4, 44244-44252.	1.7	48
63	Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. ACS Applied Materials & Interfaces, 2016, 8, 6972-6981.	4.0	47
64	Dendrite-Free Anodes Enabled by a Composite of a ZnAl Alloy with a Copper Mesh for High-Performing Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28129-28139.	4.0	47
65	Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode. Journal of Alloys and Compounds, 2021, 870, 159403.	2.8	45
66	Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides. Materials Letters, 1999, 39, 364-369.	1.3	44
67	Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon, 2019, 155, 25-33.	5.4	44
68	Surface ferromagnetism in hydrogenated-ZnO film. Applied Physics Letters, 2011, 98, .	1.5	42
69	CulnZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1, 6359.	5.2	42
70	From Titanium Sesquioxide to Titanium Dioxide: Oxidation-Induced Structural, Phase, and Property Evolution. Chemistry of Materials, 2018, 30, 4383-4392.	3.2	42
71	Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nature Communications, 2019, 10, 3149.	5.8	42
72	Multifunctional PEGylated nanoclusters for biomedical applications. Nanoscale, 2013, 5, 5994.	2.8	41

#	Article	IF	CITATIONS
73	A new family of biocompatible and stable magnetic nanoparticles: silica cross-linked pluronic F127 micelles loaded with iron oxides. New Journal of Chemistry, 2009, 33, 88-92.	1.4	40
74	Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 17359-17367.	4.0	40
75	Synergistically Configuring Intrinsic Activity and Fin-Tube-Like Architecture of Mn-Doped MoS ₂ -Based Catalyst for Improved Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 493-502.	2.5	40
76	Construction of Bioâ€inspired Film with Engineered Hydrophobicity to Boost Interfacial Reaction Kinetics of Aqueous Zinc–Ion Batteries. Small, 2022, 18, e2201732.	5.2	39
77	Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities. Chemical Physics Letters, 2008, 461, 114-117.	1.2	38
78	Pd-Ce nanoparticles supported on functional Fe-MIL-101-NH 2 : An efficient catalyst for selective glycerol oxidation. Catalysis Today, 2017, 279, 77-83.	2.2	38
79	Mechanochemical Synthesis of 0.9 Pb(Mg1/3Nb2/3)O3-0.1 PbTiO3from Mixed Oxides. Advanced Materials, 1999, 11, 210-213.	11.1	37
80	Durable, flexible, superhydrophobic and blood-repelling surfaces for use in medical blood pumps. Journal of Materials Chemistry B, 2018, 6, 6225-6233.	2.9	37
81	Metal Organic framework derived carbon for ultrahigh power and long cyclic life aqueous Zn ion capacitor. Nano Materials Science, 2020, 2, 159-163.	3.9	37
82	How different is mechanical activation from thermal activation? A case study with PZN and PZN-based relaxors. Solid State Ionics, 2000, 127, 169-175.	1.3	36
83	Synthesis of AIZS@SiO ₂ core–shell nanoparticles for cellular imaging applications. Journal of Materials Chemistry, 2012, 22, 1290-1296.	6.7	35
84	Improved energy harvesting capability of poly(vinylidene fluoride) films modified by reduced graphene oxide. Journal of Intelligent Material Systems and Structures, 2014, 25, 1813-1824.	1.4	35
85	Effect of cutting tool geometries on the ductile-brittle transition of monocrystalline sapphire. International Journal of Mechanical Sciences, 2018, 148, 565-577.	3.6	35
86	Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode. Chemical Engineering Journal, 2022, 433, 134077.	6.6	35
87	Deciphering NH ₃ Adsorption Kinetics in Ternary Ni–Cu–Fe Oxyhydroxide toward Efficient Ammonia Oxidation Reaction. Small, 2021, 17, e2005616.	5.2	34
88	Biodegradable polymer–silica xerogel composite microspheres for controlled release of gentamicin. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 417-422.	1.6	33
89	Graphitic Mesoporous Carbon Loaded with Iron–Nickel Hydroxide for Superior Oxygen Evolution Reactivity. ChemSusChem, 2016, 9, 1835-1842.	3.6	32
90	Synthesis of Pb(Mg _{1/3} Nb _{2/3})O ₃ in Excess Lead Oxide by Mechanical Activation. Journal of the American Ceramic Society, 2001, 84, 660-662.	1.9	31

#	Article	IF	CITATIONS
91	Synthesis of poly(acrylic acid) (PAA) modified Pluronic P123 copolymers for pH-stimulated release of Doxorubicin. Journal of Colloid and Interface Science, 2011, 358, 462-470.	5.0	31
92	Bismuth Titanate from Mechanical Activation of a Chemically Coprecipitated Precursor. Journal of the American Ceramic Society, 2002, 85, 2660-2665.	1.9	30
93	Titania-PMMA nanohybrids of enhanced nanocrystallinity. Journal of Electroceramics, 2006, 16, 431-439.	0.8	30
94	Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism. Nanotechnology, 2013, 24, 175702.	1.3	29
95	Sequential Combination of Constituent Oxides in the Synthesis of Pb(Fe _{1/2} Nb _{1/2})O ₃ by Mechanical Activation. Journal of the American Ceramic Society, 2002, 85, 565-572.	1.9	28
96	Ferroelectric behaviors and charge carriers in Nd-doped Bi4Ti3O12 thin films. Journal of Applied Physics, 2005, 97, 034101.	1.1	28
97	Optimizing Electrolyte Physiochemical Properties toward 2.8 V Aqueous Supercapacitor. ACS Applied Energy Materials, 2018, 1, 3070-3076.	2.5	28
98	<i>o</i> â€Benzenediolâ€Functionalized Carbon Nanosheets as Low Selfâ€Discharge Aqueous Supercapacitors. ChemSusChem, 2018, 11, 3307-3314.	3.6	27
99	Preaddition of Cations to Electrolytes for Aqueous 2.2 V High Voltage Hybrid Supercapacitor with Superlong Cycling Life and Its Energy Storage Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 17659-17668.	4.0	27
100	Interlayer Engineering of MnO ₂ with High Charge Density Bi ³⁺ for High Rate and Stable Aqueous Supercapacitor. Batteries and Supercaps, 2020, 3, 519-526.	2.4	27
101	Superparamagnetic Silica Composite Nanospheres (SSCNs) with Ultrahigh Loading of Iron Oxide Nanoparticles via an Oil-in-DEG Microemulsion Route. Chemistry of Materials, 2008, 20, 6292-6294.	3.2	26
102	Unveiling the Synergistic Effect of Ferroelectric Polarization and Domain Configuration for Reversible Zinc Metal Anodes. Advanced Science, 2022, 9, e2105980.	5.6	25
103	Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution. Nanoscale, 2015, 7, 18498-18503.	2.8	23
104	Engineering sulphur vacancy in VS ₂ as high performing zinc-ion batteries with high cyclic stability. New Journal of Chemistry, 2020, 44, 15951-15957.	1.4	23
105	Monodisperse transfer of superparamagnetic nanoparticles from non-polar solvent to aqueous phase. New Journal of Chemistry, 2013, 37, 2051.	1.4	22
106	Oxygenâ€Deficient Birnessiteâ€MnO ₂ for Highâ€Performing Rechargeable Aqueous Zincâ€Ion Batteries. ChemNanoMat, 2020, 6, 1357-1364.	1.5	22
107	Structural and magnetic studies of Cu-doped ZnO films synthesized via a hydrothermal route. Journal of Materials Chemistry, 2010, 20, 5756.	6.7	21
108	Nanohybrids of non-stoichiometric zinc ferrite in amorphous silica. Journal of Materials Chemistry, 2001, 11, 3110-3115.	6.7	20

Junmin Xue

#	Article	IF	CITATIONS
109	Significant dielectric enhancement in 0.3BiFeO3–0.7SrBi2Nb2O9. Applied Physics Letters, 2001, 79, 2061-2063.	1.5	20
110	Concentration-dependent magnetic hyperthermic response of manganese ferrite-loaded ultrasmall graphene oxide nanocomposites. New Journal of Chemistry, 2014, 38, 2312-2319.	1.4	20
111	Metalâ€Organicâ€Frameworkâ€Derived Nitrogenâ€Doped Hybrid Nickelâ€Ironâ€Sulfide Architectures on Carbon Cloth as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2741-2747.	1.7	20
112	Boosting Aqueous Zn/MnO ₂ Batteries via a Synergy of Edge/Defect-Rich Cathode and Dendrite-Free Anode. ACS Applied Materials & Interfaces, 2022, 14, 4316-4325.	4.0	20
113	Bendable graphene/conducting polymer hybrid films for freestanding electrodes with high volumetric capacitances. RSC Advances, 2016, 6, 2951-2957.	1.7	19
114	Superparamagnetic Nanostructures for Offâ€Resonance Magnetic Resonance Spectroscopic Imaging. Advanced Functional Materials, 2013, 23, 496-505.	7.8	18
115	High Lithium Insertion Voltage Singleâ€Crystal H ₂ Ti ₁₂ O ₂₅ Nanorods as a Highâ€Capacity and Highâ€Rate Lithiumâ€Ion Battery Anode Material. ChemSusChem, 2018, 11, 299-310.	3.6	18
116	αâ€Ni(OH) ₂ Originated from Electroâ€Oxidation of NiSe ₂ Supported by Carbon Nanoarray on Carbon Cloth for Efficient Water Oxidation. Small, 2019, 15, e1902222.	5.2	18
117	Mechanical Activationâ€Assisted Synthesis of Pb(Fe _{2/3} W _{1/3})O ₃ . Journal of the American Ceramic Society, 2000, 83, 1575-1580.	1.9	16
118	Mechanically robust glucose strutted graphene aerogel paper as a flexible electrode. Journal of Materials Chemistry A, 2015, 3, 19144-19147.	5.2	15
119	Fluorescent magnetic nanoparticles as minimally-invasive multi-functional theranostic platform for fluorescence imaging, MRI and magnetic hyperthermia. Materials Chemistry and Physics, 2018, 204, 388-396.	2.0	15
120	Bioinspired Dual-Tier Coalescence for Water-Collection Efficiency Enhancement. Langmuir, 2018, 34, 13409-13415.	1.6	15
121	Effects of mechanical activation on the formation of PbTiO3 from amorphous Pb–Ti–O precursor. Journal of Applied Physics, 2003, 93, 3470-3474.	1.1	14
122	Dielectric behaviors of Pb1â^'3x/2LaxTiO3 derived from mechanical activation. Journal of Applied Physics, 2004, 95, 4981-4988.	1.1	14
123	Bâ€Site Order–Disorder Transition in Pb(Mg _{1/3} Nb _{2/3})O ₃ –Pb(Mg _{1/2} W _{1/2})O _{ Triggered by Mechanical Activation. Journal of the American Ceramic Society, 2002, 85, 833-838.}	3ĸ/sub>	14
124	Inducing Crystallization in an Amorphous Lead Zirconate Titanate Precursor by Mechanical Activation. Journal of the American Ceramic Society, 1999, 82, 1641-1643.	1.9	14
125	High-Coercivity in \$alphahbox{-}{m Fe}_{2}{m O}_{3}\$ Formed After Annealing From \${m Fe}_{3}{m O}_{4}\$ Nanoparticles. IEEE Transactions on Magnetics, 2011, 47, 3340-3342.	1.2	14
126	TiO2–B nanofibrils reinforced graphene paper for multifunctional flexible electrode. Journal of Power Sources, 2018, 394, 131-139.	4.0	14

#	Article	IF	CITATIONS
127	Mechanochemical Synthesis of 0.9[0.6Pb(Zn _{1/3} Nb _{2/3})O ₃ ·0.4Pb(Mg _{1/3} Nb _{2/3Journal of the American Ceramic Society, 2000, 83, 53-59.}	>) Q9 sub>:	3⊲/ s ub>]Â∙0
128	Succinic anhydride functionalized alkenoic ligands: a facile route to synthesize water dispersible nanocrystals. Journal of Materials Chemistry, 2012, 22, 13832.	6.7	13
129	Extrusion printing of a designed three-dimensional YBa ₂ Cu ₃ O _{7â^'x} superconductor with milled precursor powder. Journal of Materials Chemistry C, 2017, 5, 3382-3389.	2.7	13
130	Low-temperature superplasticity of β-stabilized Ti-43Al-9V-Y alloy sheet with bimodal γ-grain-size distribution. Journal of Materials Science and Technology, 2021, 95, 225-236.	5.6	13
131	Mechanical activation-induced sequential combination, morphotric segregation and order–disorder transformation in Pb-based relaxors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 63-69.	1.7	12
132	Effects of Excess Bi2O3 on the Ferroelectric Behavior of Nd-Doped Bi4Ti3O12 Thin Films. Journal of the American Ceramic Society, 2005, 88, 1037-1040.	1.9	12
133	Structure characterization of BiFeO3–SrBi2Nb2O9 ceramics by mechanical activation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 116-120.	1.7	11
134	Calculation of individual bit island switching field distribution in perpendicular magnetic bit patterned media. Journal of Applied Physics, 2011, 109, 07B758.	1.1	11
135	Cu–In–Zn–S nanoporous spheres for highly efficient visible-light-driven photocatalytic hydrogen evolution. New Journal of Chemistry, 2013, 37, 1878.	1.4	11
136	Nanosized Zincâ€Oxide Particles Derived from Mechanical Activation of Zn ₅ (NO ₃) ₂ (OH) ₈ ·2H ₂ O in Sodium Chloride. Journal of the American Ceramic Society, 2002, 85, 273-275.	1.9	10
137	K ⁺ -Intercalated MnO ₂ Electrode for High Performance Aqueous Supercapacitor. ACS Applied Energy Materials, 0, , .	2.5	10
138	TRANSPARENT TIO2-PMMA NANOHYBRIDS OF HIGH NANOCRYSTALLINITY AND ENHANCED NONLINEAR OPTICAL PROPERTIES. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 281-297.	1.1	9
139	Supramolecular Surface Functionalization of Iron Oxide Nanoparticles with α-Cyclodextrin-Based Cationic Star Polymer for Magnetically-Enhanced Gene Delivery. Pharmaceutics, 2021, 13, 1884.	2.0	9
140	Polarization behaviors of (Bi3.15Nd0.85)Ti3O12 thin films deposited by radio-frequency magnetron sputtering. Journal of Applied Physics, 2005, 98, 104106.	1.1	8
141	A facile green approach for synthesizing monodisperse magnetite nanoparticles. Journal of Materials Research, 2010, 25, 810-813.	1.2	8
142	Controlled loading of paramagnetic gadolinium oxide nanoplates in PMAO-g-PEG as effective T ₁ -weighted MRI contrast agents. Journal of Materials Research, 2014, 29, 1626-1634.	1.2	8
143	Additive Manufacturing of Stable Energy Storage Devices Using a Multinozzle Printing System. Advanced Functional Materials, 2021, 31, 2008280.	7.8	8
144	Synthesis of FeCo nanoparticles from FeO(OH) and Co3O4 using oleic acid as reduction agent. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7

Junmin Xue

#	Article	IF	CITATIONS
145	Strontium–titanate-doped lead metaniobate ferroelectric thin films. Applied Physics Letters, 2002, 81, 877-879.	1.5	6
146	Synthesis of Ag-In-Zn-S alloyed nanorods and their biological application. Nanotechnology, 2014, 25, 485702.	1.3	6
147	<i>In situ</i> TEM study of electron-beam radiation induced boron diffusion and effects on phase and microstructure evolution in nanostructured CoFeB/SiO2 thin film. Journal of Applied Physics, 2017, 121, .	1.1	6
148	The B-site order-disorder transformation in Pb(Sc1/2Ta1/2)O3triggered by mechanical activation. Journal of Materials Science, 2004, 39, 5267-5270.	1.7	4
149	Perpendicular magnetic clusters with configurable domain structures via dipole–dipole interactions. Nano Research, 2015, 8, 3639-3650.	5.8	4
150	Ferroelectric Behaviors of W-Doped SrBi2Ta2O9 Thin Films. Integrated Ferroelectrics, 2004, 62, 163-169.	0.3	3
151	Unique Dielectric Behavior of 0.6Pb(Ni _{1/2} W _{1/2})O ₃ ·0.4PbTiO ₃ Derived from Mechanical Activation. Journal of the American Ceramic Society, 2003, 86, 791-794.	1.9	2
152	Perovskite nanocrystallite of PMN-based ferroelectrics by mechanical activation. Ferroelectrics, 2001, 253, 21-30.	0.3	1
153	Crystallization of Lead Niobate Glass by Mechanical Activation. Journal of the American Ceramic Society, 2001, 84, 2691-2695.	1.9	1
154	Ferroelectric and Dielectric Properties of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 Thin Films Derived from RF Magnetron Sputtering. Journal of the American Ceramic Society, 2005, 88, 2769-2774.	1.9	1
155	PREPARATION AND STRUCTURE CHARACTERIZATION OF BiFeO3-SrBi2Nb2O9 THIN FILMS ON SILICON BY SOL-GEL PROCESSING. International Journal of Modern Physics B, 2002, 16, 4455-4459.	1.0	0
156	Post-Sinter Annealing of Pb0.7La0.2TiO3 Derived from Mechanical Activation. Integrated Ferroelectrics, 2004, 62, 35-41.	0.3	0
157	Pb(Zn1/3Ta2/3)O3-PbTiO3 Derived from Mechanical Activation. Journal of the American Ceramic Society, 2006, 89, 060623005134009-???.	1.9	0
158	Phase transition behaviors of (Na1/2Bi1/2)1â^'x TiPb x O3 thin films. Journal of Electroceramics, 2008, 21, 336-339.	0.8	0
159	Bilayered Pb(Zr,Ti)O3/(Bi,Nd)4Ti3O12 thin films. Journal of Electroceramics, 2008, 21, 331-335.	0.8	0

160 Mesoporous Carbon Nanomaterials. , 2016, , 505-540.