Yunpu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8783395/publications.pdf

Version: 2024-02-01

57631 76769 6,403 123 44 74 citations h-index g-index papers 125 125 125 4221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pulse pyrolysis of waste cooking oil over CaO: Exploration of catalyst deactivation pathway based on feedstock characteristics. Applied Catalysis B: Environmental, 2022, 304, 120968.	10.8	25
2	Improving the efficiency of anaerobic digestion: Domesticated paddy soil microbes enhance the hydrolytic acidification of rice straw and pig manure. Bioresource Technology, 2022, 345, 126570.	4.8	12
3	Microwave catalytic co-pyrolysis of waste cooking oil and low-density polyethylene to produce monocyclic aromatic hydrocarbons: Effect of different catalysts and pyrolysis parameters. Science of the Total Environment, 2022, 809, 152182.	3.9	31
4	Pressurized ex-situ catalytic co-pyrolysis of polyethylene and lignin: Efficient BTEX production and process mechanism analysis. Chemical Engineering Journal, 2022, 431, 134122.	6.6	47
5	A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 2022, 254, 115243.	4.4	145
6	Microwave-Assisted Camellia oleifera Abel Shell Biochar Catalyzed Fast Pyrolysis of Waste Vegetable Oil to Produce Aromatic-Rich Bio-Oil. Frontiers in Energy Research, 2022, 10, .	1.2	3
7	The combination of aerobic and microaerobic promote hydrolysis and acidification of rice straw and pig manure: Balance of insoluble and soluble substrate. Bioresource Technology, 2022, 350, 126880.	4.8	6
8	Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil. Science of the Total Environment, 2022, 827, 154186.	3.9	11
9	A structured catalyst of ZSM-5/SiC foam for chemical recycling of waste plastics via catalytic pyrolysis. Chemical Engineering Journal, 2022, 440, 135836.	6.6	29
10	Biochar: From by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. Chemical Engineering Journal, 2022, 441, 135972.	6.6	69
11	Development of microalgae-bacteria symbiosis system for enhanced treatment of biogas slurry. Bioresource Technology, 2022, 354, 127187.	4.8	23
12	Research progress on the role of common metal catalysts in biomass pyrolysis: a state-of-the-art review. Green Chemistry, 2022, 24, 3922-3942.	4.6	34
13	Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: Comparison of HZSM-5, $H\hat{l}^2$, HY and MCM-41. Journal of Cleaner Production, 2022, 358, 131989.	4.6	28
14	Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods. Renewable and Sustainable Energy Reviews, 2022, 165, 112607.	8.2	42
15	Effects of microalgae-bacteria inoculation ratio on biogas slurry treatment and microorganism interactions in the symbiosis system. Journal of Cleaner Production, 2022, 362, 132271.	4.6	15
16	Effects of Culture Conditions on the Performance of Arthrospira platensis and Its Production of Exopolysaccharides. Foods, 2022, 11, 2020.	1.9	13
17	Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process. Applied Energy, 2022, 323, 119629.	5.1	14
18	Review on the catalytic pyrolysis of waste oil for the production of renewable hydrocarbon fuels. Fuel, 2021, 283, 119170.	3.4	58

#	Article	IF	CITATIONS
19	Study on the mechanism of co-catalyzed pyrolysis of biomass by potassium and calcium. Bioresource Technology, 2021, 320, 124415.	4.8	19
20	Treatment and nutrient recovery from acetophenone based wastewater by an integrated catalytic intense pulsed light and Tribonema sp. cultivation. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108276.	1.8	3
21	Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. Bioresource Technology, 2021, 323, 124607.	4.8	15
22	Catalytic fast pyrolysis of low density polyethylene into naphtha with high selectivity by dual-catalyst tandem catalysis. Science of the Total Environment, 2021, 771, 144995.	3.9	35
23	Production of renewable phenols from corn cob using catalytic pyrolysis over self-derived activated carbons prepared with torrefaction pretreatment and chemical activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126507.	2.3	7
24	Chemical upcycling of waste polyolefinic plastics to low-carbon synthetic naphtha for closing the plastic use loop. Science of the Total Environment, 2021, 782, 146897.	3.9	19
25	Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters. Energy, 2021, 232, 121090.	4.5	28
26	Microwave-assisted catalytic pyrolysis of corn cobs with Fe-modified Choerospondias axillaris seed-based biochar catalyst for phenol-rich bio-oil. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105306.	2.6	23
27	Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha. Energy Conversion and Management, 2021, 245, 114578.	4.4	37
28	Pyrolysis of soybean soapstock for hydrocarbon bio-oil over a microwave-responsive catalyst in a series microwave system. Bioresource Technology, 2021, 341, 125800.	4.8	9
29	Assessment of Potential Nitrite Safety Risk of Leafy Vegetables after Domestic Cooking. Foods, 2021, 10, 2953.	1.9	5
30	Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. Bioresource Technology, 2020, 299, 122611.	4.8	30
31	Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production. Environmental Research, 2020, 182, 108988.	3.7	36
32	Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic. Bioresource Technology, 2020, 297, 122490.	4.8	74
33	Fast microwave-assisted pyrolysis of wastes for biofuels production – A review. Bioresource Technology, 2020, 297, 122480.	4.8	137
34	Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environment International, 2020, 134, 105340.	4.8	69
35	Physicochemical and emulsifying properties of orange fibers stabilized oil-in-water emulsions. LWT - Food Science and Technology, 2020, 133, 110054.	2.5	19
36	A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Science of the Total Environment, 2020, 749, 142386.	3.9	145

#	Article	IF	CITATIONS
37	Synthesis of iron nanoparticles-based hydrochar catalyst for ex-situ catalytic microwave-assisted pyrolysis of lignocellulosic biomass to renewable phenols. Fuel, 2020, 279, 118532.	3.4	40
38	Ex-situ catalytic fast pyrolysis of soapstock for aromatic oil over microwave-driven HZSM-5@SiC ceramic foam. Chemical Engineering Journal, 2020, 402, 126239.	6.6	52
39	Gasification and pyrolysis of waste. , 2020, , 263-297.		0
40	Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons. Energy, 2020, 209, 118454.	4.5	32
41	New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World Journal of Microbiology and Biotechnology, 2020, 36, 144.	1.7	78
42	Conversion of soybean soapstock into hydrocarbon fuel by microwave-assisted catalytic fast pyrolysis using MCM-41/HZSM-5 in a downdraft reactor. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108109.	1.8	8
43	Applications of microwave energy in gas production and tar removal during biomass gasification. Sustainable Energy and Fuels, 2020, 4, 5927-5946.	2.5	23
44	A novel production of phase-divided jet-fuel-range hydrocarbons and phenol-enriched chemicals from catalytic co-pyrolysis of lignocellulosic biomass with low-density polyethylene over carbon catalysts. Sustainable Energy and Fuels, 2020, 4, 3687-3700.	2.5	20
45	Characteristics of the catalytic fast pyrolysis of vegetable oil soapstock for hydrocarbon-rich fuel. Energy Conversion and Management, 2020, 213, 112860.	4.4	42
46	Catalytic intense pulse light inactivation of Cronobacter sakazakii and other pathogens in non-fat dry milk and wheat flour. Food Chemistry, 2020, 332, 127420.	4.2	17
47	Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresource Technology, 2020, 314, 123756.	4.8	69
48	Microwave-assisted pyrolysis of waste cooking oil for hydrocarbon bio-oil over metal oxides and HZSM-5 catalysts. Energy Conversion and Management, 2020, 220, 113124.	4.4	49
49	Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: A review. Algal Research, 2020, 47, 101819.	2.4	59
50	Integrating pyrolysis and ex-situ catalytic reforming by microwave heating to produce hydrocarbon-rich bio-oil from soybean soapstock. Bioresource Technology, 2020, 302, 122843.	4.8	21
51	Cultivation of Chlorella vulgaris in a Light-Receiving-Plate (LRP)-Enhanced Raceway Pond for Ammonium and Phosphorus Removal from Pretreated Pig Urine. Energies, 2020, 13, 1644.	1.6	10
52	Influence of nanofiltration concentrate recirculation on performance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. Journal of Cleaner Production, 2020, 261, 121067.	4.6	34
53	Bamboo biochar-catalytic degradation of lignin under microwave heating. Journal of Wood Chemistry and Technology, 2020, 40, 190-199.	0.9	12
54	Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 2020, 268, 121725.	4.6	819

#	Article	IF	Citations
55	Recent advances in improving lignocellulosic biomass-based bio-oil production. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104845.	2.6	59
56	Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system. Journal of Cleaner Production, 2020, 255, 120179.	4.6	34
57	Gasification Technologies and Their Energy Potentials. , 2019, , 193-206.		41
58	Biofuels: Introduction., 2019,, 3-43.		36
59	Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 2019, 196, 1316-1325.	4.4	172
60	Conversion of woody oil into bio-oil in a downdraft reactor using a novel silicon carbide foam supported MCM41 composite catalyst. RSC Advances, 2019, 9, 19729-19739.	1.7	11
61	Plasma <i>in situ</i> gas–liquid nitrogen fixation using concentrated high-intensity electric field. Journal Physics D: Applied Physics, 2019, 52, 494001.	1.3	24
62	Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104691.	2.6	56
63	Co-pyrolysis of biomass and soapstock in a downdraft reactor using a novel ZSM-5/SiC composite catalyst. Bioresource Technology, 2019, 279, 202-208.	4.8	25
64	Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis. Journal of Cleaner Production, 2019, 231, 331-340.	4.6	60
65	Sustainable Nonâ€Thermal Plasmaâ€Assisted Nitrogen Fixationâ€"Synergistic Catalysis. ChemSusChem, 2019, 12, 3702-3712.	3.6	31
66	Screening microwave susceptors for microwave-assisted pyrolysis of lignin: Comparison of product yield and chemical profile. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104623.	2.6	23
67	Effects of intense pulsed light on Cronobacter sakazakii and Salmonella surrogate Enterococcus faecium inoculated in different powdered foods. Food Chemistry, 2019, 296, 23-28.	4.2	33
68	Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons. Bioresource Technology, 2019, 289, 121609.	4.8	51
69	Catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system. Waste Management, 2019, 88, 102-109.	3.7	23
70	Syngas production from microwave-assisted air gasification of biomass: Part 2 model validation. Renewable Energy, 2019, 140, 625-632.	4.3	27
71	Syngas production from microwave-assisted air gasification of biomass: Part 1 model development. Renewable Energy, 2019, 140, 772-778.	4.3	24
72	Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2019, 107, 20-36.	8.2	186

#	Article	IF	CITATIONS
73	Microwave-assisted catalytic fast pyrolysis coupled with microwave-absorbent of soapstock for bio-oil in a downdraft reactor. Energy Conversion and Management, 2019, 185, 11-20.	4.4	55
74	Comparative study on characteristics of the bio-oil from microwave-assisted pyrolysis of lignocellulose and triacylglycerol. Science of the Total Environment, 2019, 659, 95-100.	3.9	33
75	Bridging the relationship between hydrothermal pretreatment and co-pyrolysis: Effect of hydrothermal pretreatment on aromatic production. Energy Conversion and Management, 2019, 180, 36-43.	4.4	39
76	Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst. Bioresource Technology, 2019, 272, 407-414.	4.8	86
77	Biorefinery process for production of bioactive compounds and bio-oil from Camellia oleifera shell. International Journal of Agricultural and Biological Engineering, 2019, 12, 190-194.	0.3	4
78	Microwave-assisted pyrolysis of vegetable oil soapstock: Comparative study of rapeseed, sunflower, corn, soybean, rice, and peanut oil soapstock. International Journal of Agricultural and Biological Engineering, 2019, 12, 202-208.	0.3	2
79	The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass. Bioresource Technology, 2018, 259, 156-163.	4.8	74
80	Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock. Bioresource Technology, 2018, 261, 306-312.	4.8	37
81	Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresource Technology, 2018, 261, 86-92.	4.8	132
82	Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresource Technology, 2018, 256, 295-301.	4.8	96
83	Co-pyrolysis of wet torrefied bamboo sawdust and soapstock. Journal of Analytical and Applied Pyrolysis, 2018, 132, 211-216.	2.6	23
84	Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst. Journal of Analytical and Applied Pyrolysis, 2018, 133, 76-81.	2.6	34
85	Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior. Bioresource Technology, 2018, 258, 98-104.	4.8	28
86	Hydrothermal pretreatment of bamboo sawdust using microwave irradiation. Bioresource Technology, 2018, 247, 234-241.	4.8	48
87	In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresource Technology, 2018, 247, 851-858.	4.8	108
88	Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Bioresource Technology, 2018, 249, 69-75.	4.8	81
89	Properties and pyrolysis behavior of moso bamboo sawdust after microwave-assisted acid pretreatment. Journal of Analytical and Applied Pyrolysis, 2018, 129, 86-92.	2.6	21
90	Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Bioresource Technology, 2018, 251, 57-62.	4.8	71

#	Article	IF	Citations
91	Comparative study on various alcohols solvolysis of organosolv lignin using microwave energy: Physicochemical and morphological properties. Chemical Engineering and Processing: Process Intensification, 2018, 126, 38-44.	1.8	20
92	Microwave-assisted Depolymerization of Lignin with Metal Chloride in a Hydrochloric Acid and Formic Acid System. BioResources, 2018, 13, .	0.5	9
93	Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresource Technology, 2018, 269, 285-291.	4.8	59
94	Co-pyrolysis of microwave-assisted acid pretreated bamboo sawdust and soapstock. Bioresource Technology, 2018, 265, 33-38.	4.8	18
95	Microwave-assisted catalytic pyrolysis of Chinese tallow kernel oil for aromatic production in a downdraft reactor. Journal of Analytical and Applied Pyrolysis, 2018, 133, 16-21.	2.6	20
96	Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass. Bioresource Technology, 2018, 267, 257-264.	4.8	51
97	Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis. Bioresource Technology, 2018, 268, 1-8.	4.8	64
98	Breakthrough Technologies for the Biorefining of Organic Solid and Liquid Wastes. Engineering, 2018, 4, 574-580.	3.2	33
99	Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresource Technology, 2018, 269, 162-168.	4.8	93
100	Fungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock. Bioresources and Bioprocessing, 2017, 4, 6.	2.0	9
101	Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production. Waste Management, 2017, 61, 276-282.	3.7	49
102	Production of hydrocarbon-rich bio-oil from soapstock via fast microwave-assisted catalytic pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 125, 356-362.	2.6	37
103	Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production. Journal of Analytical and Applied Pyrolysis, 2017, 124, 35-41.	2.6	40
104	Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel, 2017, 196, 261-268.	3.4	81
105	Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresource Technology, 2017, 241, 207-213.	4.8	94
106	Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. Journal of Analytical and Applied Pyrolysis, 2017, 123, 224-228.	2.6	46
107	Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Bioresource Technology, 2017, 241, 1118-1126.	4.8	195
108	Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors. Energy Conversion and Management, 2017, 146, 1-7.	4.4	133

#	Article	IF	CITATIONS
109	Microwave-assisted catalytic fast co-pyrolysis of soapstock and waste tire for bio-oil production. Journal of Analytical and Applied Pyrolysis, 2017, 125, 304-309.	2.6	39
110	Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Conversion and Management, 2017, 149, 432-441.	4.4	126
111	Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresource Technology, 2017, 225, 1-8.	4.8	83
112	Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresource Technology, 2017, 225, 199-205.	4.8	169
113	Low-Power Microwave Radiation-assisted Depolymerization of Ethanol Organosolv Lignin in Ethanol/Formic Acid Mixtures. BioResources, 2017, 12, .	0.5	12
114	Catalytic Effects of Various Acids on Microwave-assisted Depolymerization of Organosolv Lignin. BioResources, 2017, 13, .	0.5	8
115	Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. Journal of Analytical and Applied Pyrolysis, 2016, 119, 251-258.	2.6	77
116	Effect of unsaturation degree on microwave-assisted pyrolysis of fatty acid salts. Journal of Analytical and Applied Pyrolysis, 2016, 120, 247-251.	2.6	15
117	Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Research International, 2016, 89, 63-73.	2.9	43
118	Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresource Technology, 2016, 215, 163-172.	4.8	141
119	Syntheses of 5-Hydroxymethylfurfural Through Glucose Dehydration in Diphasic Solvent System on ZrO ₂ and SO ₄ ^{2â^'} /TiO ₂ -SiO ₂ Catalyst. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 177-184.	0.6	9
120	Effects of Extraction Conditions on the Characteristics of Ethanol Organosolv Lignin from Bamboo (Phyllostachys pubescens Mazel). BioResources, 2015, 10, .	0.5	12
121	Mechanism of Hydrocarbon Generation from Sodium Stearate Decarboxylation by Microwave Assisted Pyrolysis. Acta Chimica Sinica, 2012, 70, 114.	0.5	1
122	Production of renewable hydrocarbon fuels& #x2014; Thermochemical behavior of fatty acid soap decarboxylation during microwave-assisted pyrolysis., 2011,,.		0
123	Microwaveâ€Assisted Pyrolysis of Biomass for Bioâ€Oil Production. , 0, , .		26