Christo Pantev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8783307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased auditory cortical representation in musicians. Nature, 1998, 392, 811-814.	13.7	727
2	Alteration of digital representations in somatosensory cortex in focal hand dystonia. NeuroReport, 1998, 9, 3571-3575.	0.6	417
3	Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 2001, 12, 169-174.	0.6	345
4	Effect of bilingualism on cognitive control in the Simon task: evidence from MEG. NeuroImage, 2005, 24, 40-49.	2.1	331
5	Perceptual Correlates of Changes in Cortical Representation of Fingers in Blind Multifinger Braille Readers. Journal of Neuroscience, 1998, 18, 4417-4423.	1.7	323
6	Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage, 2010, 51, 877-887.	2.1	294
7	Musical Training Enhances Automatic Encoding of Melodic Contour and Interval Structure. Journal of Cognitive Neuroscience, 2004, 16, 1010-1021.	1.1	287
8	One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 2006, 129, 2593-2608.	3.7	286
9	Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Experimental Brain Research, 1998, 119, 205-212.	0.7	269
10	A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. Journal of the Acoustical Society of America, 2000, 108, 679-691.	0.5	268
11	Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1207-1210.	3.3	219
12	Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 2008, 28, 9632-9639.	1.7	217
13	Tonotopic organization of the sources of human auditory steady-state responses. Hearing Research, 1996, 101, 62-74.	0.9	205
14	Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 2000, 11, 817-822.	0.6	204
15	Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hearing Research, 2002, 165, 68-84.	0.9	185
16	Evoked and induced gamma-band activity of the human cortex. Brain Topography, 1995, 7, 321-330.	0.8	166
17	Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport, 2005, 16, 1781-1785.	0.6	164
18	Automatic Encoding of Polyphonic Melodies in Musicians and Nonmusicians. Journal of Cognitive Neuroscience, 2005, 17, 1578-1592.	1.1	160

#	Article	IF	CITATIONS
19	Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international) Tj ETQq1 1 0.784314 rgB ⁻	[Overlock	10 Tf 50
20	Plasticity of the human auditory cortex related to musical training. Neuroscience and Biobehavioral Reviews, 2011, 35, 2140-2154.	2.9	148
21	Changed perceptions in Braille readers. Nature, 1998, 391, 134-135.	13.7	146
22	High-frequency cortical responses reflect lexical processing: an MEG study. Electroencephalography and Clinical Neurophysiology, 1996, 98, 76-85.	0.3	145
23	Expansion of the Tonotopic Area in the Auditory Cortex of the Blind. Journal of Neuroscience, 2002, 22, 9941-9944.	1.7	145
24	Cortical reorganization in patients with high frequency cochlear hearing loss. Hearing Research, 2001, 158, 95-101.	0.9	144
25	Frequency-specific modulation of population-level frequency tuning in human auditory cortex. BMC Neuroscience, 2009, 10, 1.	0.8	137
26	Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans. Experimental Brain Research, 1997, 117, 161-164.	0.7	134
27	Music and Learning-Induced Cortical Plasticity. Annals of the New York Academy of Sciences, 2003, 999, 438-450.	1.8	121
28	Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human. NeuroReport, 1997, 8, 1103-1107.	0.6	111
29	Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry. NeuroImage, 2003, 20, 995-1005.	2.1	110
30	Short-term plasticity of the human auditory cortex. Brain Research, 1999, 842, 192-199.	1.1	99
31	Study of the Human Auditory Cortices Using a Whole-Head Magnetometer: Left vs. Right Hemisphere and Ipsilateral vs. Contralateral Stimulation. Audiology and Neuro-Otology, 1998, 3, 183-190.	0.6	97
32	Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training. PLoS ONE, 2011, 6, e21493.	1.1	94
33	Attention Improves Population-Level Frequency Tuning in Human Auditory Cortex. Journal of Neuroscience, 2007, 27, 10383-10390.	1.7	93
34	Improving permutation test power for group analysis of spatially filtered MEG data. NeuroImage, 2004, 23, 983-996.	2.1	92
35	Clinical trial on tonal tinnitus with tailor-made notched music training. BMC Neurology, 2016, 16, 38.	0.8	89
36	Timeâ€dependent hemispheric shift of the cortical control of volitional swallowing. Human Brain Mapping, 2009, 30, 92-100.	1.9	88

3

#	Article	IF	CITATIONS
37	Evidence for adaptive cortical changes in swallowing in Parkinson's disease. Brain, 2013, 136, 726-738.	3.7	84
38	A combined functional in vivo measure for primary and secondary auditory cortices. Hearing Research, 2000, 148, 153-160.	0.9	83
39	Neural basis of music imagery and the effect of musical expertise. European Journal of Neuroscience, 2008, 28, 2352-2360.	1.2	82
40	Cortical Steady-State Responses to Central and Peripheral Auditory Beats. Cerebral Cortex, 2008, 18, 1193-1200.	1.6	82
41	Plasticity of the Human Auditory Cortex Induced by Discrimination Learning of Non-Native, Mora-Timed Contrasts of the Japanese Language. Learning and Memory, 2002, 9, 253-267.	0.5	80
42	Frequency specificity of 40-Hz auditory steady-state responses. Hearing Research, 2003, 186, 57-68.	0.9	80
43	Rapid and Highly Resolving: Affective Evaluation of Olfactorily Conditioned Faces. Journal of Cognitive Neuroscience, 2012, 24, 17-27.	1.1	80
44	Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning. Cerebral Cortex, 2016, 26, 3125-3134.	1.6	79
45	Lateral inhibition and habituation of the human auditory cortex. European Journal of Neuroscience, 2004, 19, 2337-2344.	1.2	77
46	Functional reorganization of the human primary somatosensory cortex after acute pain demonstrated by magnetoencephalography. Neuroscience Letters, 2001, 298, 195-198.	1.0	73
47	Randomized trial of transcranial direct current stimulation for poststroke dysphagia. Annals of Neurology, 2018, 83, 328-340.	2.8	73
48	Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment. Frontiers in Systems Neuroscience, 2012, 6, 50.	1.2	70
49	Evidence for training-induced crossmodal reorganization of cortical functions in trumpet players. NeuroReport, 2003, 14, 157-161.	0.6	68
50	Binaural fusion and the representation of virtual pitch in the human auditory cortex. Hearing Research, 1996, 100, 164-170.	0.9	67
51	Sensory mapping of lip representation in brass musicians with embouchure dystonia. NeuroReport, 2004, 15, 815-818.	0.6	67
52	Musicians with absolute pitch show distinct neural activities in the auditory cortex. NeuroReport, 1999, 10, 999-1002.	0.6	64
53	Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography. Clinical Neurophysiology, 2009, 120, 497-504.	0.7	64
54	Emotion-Associated Tones Attract Enhanced Attention at Early Auditory Processing: Magnetoencephalographic Correlates. Journal of Neuroscience, 2011, 31, 7801-7810.	1.7	64

#	Article	IF	CITATIONS
55	Statistical learning effects in musicians and non-musicians: An MEG study. Neuropsychologia, 2012, 50, 341-349.	0.7	62
56	Hemispheric Asymmetry of Auditory Evoked Fields Elicited by Spectral versus Temporal Stimulus Change. Cerebral Cortex, 2009, 19, 2290-2297.	1.6	61
57	Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules. Journal of Neuroscience, 2012, 32, 18196-18203.	1.7	61
58	Short and Intense Tailor-Made Notched Music Training against Tinnitus: The Tinnitus Frequency Matters. PLoS ONE, 2011, 6, e24685.	1.1	60
59	New Names for Known Things: On the Association of Novel Word Forms with Existing Semantic Information. Journal of Cognitive Neuroscience, 2010, 22, 1251-1261.	1.1	59
60	Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation. NeuroImage, 2013, 83, 346-354.	2.1	58
61	Looking for a pattern: An MEG study on the abstract mismatch negativity in musicians and nonmusicians. BMC Neuroscience, 2009, 10, 42.	0.8	57
62	An integrative MEG–fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis. NeuroImage, 2004, 22, 120-133.	2.1	54
63	Magnetoencephalographic Studies of Functional Organization and Plasticity of the Human Auditory Cortex. Journal of Clinical Neurophysiology, 2000, 17, 130-142.	0.9	54
64	Effects of anterior cingulate fissurization on cognitive control during stroop interference. Human Brain Mapping, 2009, 30, 1279-1289.	1.9	53
65	Atypical organisation of the auditory cortex in dyslexia as revealed by MEG. Neuropsychologia, 2000, 38, 1749-1759.	0.7	52
66	Magnetoencephalographic Correlates of Emotional Processing in Major Depression Before and After Pharmacological Treatment. International Journal of Neuropsychopharmacology, 2016, 19, pyv093.	1.0	52
67	Rhythmic brain activities related to singing in humans. NeuroImage, 2007, 34, 426-434.	2.1	51
68	Magnetic brain activity evoked and induced by visually presented words and nonverbal stimuli. Psychophysiology, 2000, 37, 447-455.	1.2	50
69	Processing of Complex Auditory Patterns in Musicians and Nonmusicians. PLoS ONE, 2011, 6, e21458.	1.1	50
70	Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection. Frontiers in Human Neuroscience, 2013, 7, 260.	1.0	49
71	Combining Transcranial Direct Current Stimulation and Tailor-Made Notched Music Training to Decrease Tinnitus-Related Distress $\hat{a} \in A$ Pilot Study. PLoS ONE, 2014, 9, e89904.	1.1	49
72	Sound Processing Hierarchy within Human Auditory Cortex. Journal of Cognitive Neuroscience, 2011, 23, 1855-1863.	1.1	48

#	Article	IF	CITATIONS
73	Age-related changes in cortical swallowing processing. Neurobiology of Aging, 2010, 31, 1044-1050.	1.5	47
74	Human auditory middle latency responses: influence of stimulus type and intensity. Hearing Research, 2001, 158, 57-64.	0.9	46
75	Auditory steady-state responses reveal amplitude modulation gap detection thresholds. Journal of the Acoustical Society of America, 2004, 115, 2193-2206.	0.5	45
76	Auditoryâ€Somatosensory Integration and Cortical Plasticity in Musical Training. Annals of the New York Academy of Sciences, 2009, 1169, 143-150.	1.8	44
77	Musical expertise is related to altered functional connectivity during audiovisual integration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12522-12527.	3.3	44
78	Evidence for Training-Induced Plasticity in Multisensory Brain Structures: An MEG Study. PLoS ONE, 2012, 7, e36534.	1.1	44
79	Left hemispheric dominance during auditory processing in a noisy environment. BMC Biology, 2007, 5, 52.	1.7	42
80	Cortical Processing of Swallowing in ALS Patients with Progressive Dysphagia – A Magnetoencephalographic Study. PLoS ONE, 2011, 6, e19987.	1.1	41
81	Auditory Cortical Response Patterns to Multiple Rhythms of AM Sound. Ear and Hearing, 2002, 23, 254-265.	1.0	40
82	Pharyngeal electrical stimulation can modulate swallowing in cortical processing and behavior — Magnetoencephalographic evidence. NeuroImage, 2015, 104, 117-124.	2.1	40
83	Musical training modulates encoding of higher-order regularities in the auditory cortex. European Journal of Neuroscience, 2011, 34, 524-529.	1.2	37
84	Inhibition-induced plasticity in tinnitus patients after repetitive exposure to tailor-made notched music. Clinical Neurophysiology, 2015, 126, 1007-1015.	0.7	37
85	Tinnitus: the dark side of the auditory cortex plasticity. Annals of the New York Academy of Sciences, 2012, 1252, 253-258.	1.8	36
86	The Relevance of Interoception in Chronic Tinnitus: Analyzing Interoceptive Sensibility and Accuracy. BioMed Research International, 2015, 2015, 1-9.	0.9	36
87	Failure of dominant left-hemispheric activation to right-ear stimulation in schizophrenia. NeuroReport, 1998, 9, 3819-3822.	0.6	35
88	Auditory evoked fields differentially encode speech features: an MEG investigation of the P50m and N100m time courses during syllable processing. European Journal of Neuroscience, 2007, 25, 3155-3162.	1.2	35
89	Comparison of magnetic, and metabolic brain activity during a verb generation task. NeuroReport, 1994, 6, 97-100.	0.6	34
90	A Beamformer Analysis of MEG Data Reveals Frontal Generators of the Musically Elicited Mismatch Negativity. PLoS ONE, 2013, 8, e61296.	1.1	34

#	Article	IF	CITATIONS
91	Effects of Place of Articulation Changes on Auditory Neural Activity: A Magnetoencephalography Study. PLoS ONE, 2009, 4, e4452.	1.1	33
92	Cortical compensation associated with dysphagia caused by selective degeneration of bulbar motor neurons. Human Brain Mapping, 2009, 30, 1352-1360.	1.9	32
93	Multisensory Integration during Short-term Music Reading Training Enhances Both Uni- and Multisensory Cortical Processing. Journal of Cognitive Neuroscience, 2014, 26, 2224-2238.	1.1	30
94	A statistical method for analyzing and comparing spatiotemporal cortical activation patterns. Scientific Reports, 2018, 8, 5433.	1.6	30
95	Frequency-Specific Threshold Determination with the CERAgram Method: Basic Principle and Retrospective Evaluation of Data. Audiology and Neuro-Otology, 1999, 4, 12-27.	0.6	29
96	Individualized EEG source reconstruction of Stroop interference with masked color words. NeuroImage, 2010, 49, 1800-1809.	2.1	29
97	The perception of coherent and non-coherent auditory objects: a signature in gamma frequency band. Hearing Research, 2000, 145, 161-168.	0.9	28
98	Current source density distribution of sleep spindles in humans as found by synthetic aperture magnetometry. Neuroscience Letters, 2003, 340, 25-28.	1.0	28
99	Magnetoencephalographic study of the cortical activity elicited by human voice. Neuroscience Letters, 2003, 348, 13-16.	1.0	28
100	Customized notched music training reduces tinnitus loudness. Communicative and Integrative Biology, 2010, 3, 274-277.	0.6	28
101	Audio-Tactile Integration and the Influence of Musical Training. PLoS ONE, 2014, 9, e85743.	1.1	28
102	Maladaptive alterations of resting state cortical network in Tinnitus: A directed functional connectivity analysis of a larger MEG data set. Scientific Reports, 2019, 9, 15452.	1.6	28
103	Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex. Human Brain Mapping, 2014, 35, 5701-5716.	1.9	27
104	Musical expertise is related to neuroplastic changes of multisensory nature within the auditory cortex. European Journal of Neuroscience, 2015, 41, 709-717.	1.2	27
105	N1m recovery from decline after exposure to noise with strong spectral contrasts. Hearing Research, 2004, 196, 77-86.	0.9	26
106	Enhanced anterior-temporal processing for complex tones in musicians. Clinical Neurophysiology, 2007, 118, 209-220.	0.7	26
107	Differential processing of melodic, rhythmic and simple tone deviations in musicians -an MEG study. NeuroImage, 2016, 124, 898-905.	2.1	26
108	Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training. PLoS ONE, 2015, 10, e0138595.	1.1	26

#	Article	IF	CITATIONS
109	Responsiveness to repeated speech stimuli persists in left but not right auditory cortex. NeuroReport, 2004, 15, 1267-1270.	0.6	25
110	Cortical oscillations related to processing congruent and incongruent grapheme–phoneme pairs. Neuroscience Letters, 2006, 399, 61-66.	1.0	24
111	Asymmetric lateral inhibitory neural activity in the auditory system: a magnetoencephalographic study. BMC Neuroscience, 2007, 8, 33.	0.8	24
112	MEG study of long-term cortical reorganization of sensorimotor areas with respect to using chopsticks. NeuroReport, 2002, 13, 2155-2159.	0.6	23
113	Tonotopic representation of missing fundamental complex sounds in the human auditory cortex. European Journal of Neuroscience, 2003, 18, 432-440.	1.2	23
114	Learning of tactile frequency discrimination in humans. Human Brain Mapping, 2003, 18, 260-271.	1.9	22
115	Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training. BMC Neuroscience, 2009, 10, 143.	0.8	21
116	Playing and Listening to Tailor-Made Notched Music: Cortical Plasticity Induced by Unimodal and Multimodal Training in Tinnitus Patients. Neural Plasticity, 2014, 2014, 1-10.	1.0	21
117	Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study. PLoS ONE, 2014, 9, e89665.	1.1	21
118	Psychometric assessment of mental health in tinnitus patients, depressive and healthy controls. Psychiatry Research, 2019, 281, 112582.	1.7	20
119	Modulatory Effects of Spectral Energy Contrasts on Lateral Inhibition in the Human Auditory Cortex: An MEG Study. PLoS ONE, 2013, 8, e80899.	1.1	20
120	Temporal Processing of Audiovisual Stimuli Is Enhanced in Musicians: Evidence from Magnetoencephalography (MEG). PLoS ONE, 2014, 9, e90686.	1.1	20
121	Different Modes of Pitch Perception and Learning-Induced Neuronal Plasticity of the Human Auditory Cortex. Neural Plasticity, 2002, 9, 161-175.	1.0	19
122	Brain stem auditory evoked fields in response to clicks. NeuroReport, 2000, 11, 913-918.	0.6	18
123	Functional parcellation of the inferior frontal and midcingulate cortices in a flankerâ€stopâ€change paradigm. Human Brain Mapping, 2013, 34, 1501-1514.	1.9	18
124	Affectâ€specific modulation of the <scp>N</scp> 1m to shock onditioned tones: magnetoencephalographic correlates. European Journal of Neuroscience, 2013, 37, 303-315.	1.2	18
125	Evaluation of iPod-Based Automated Tinnitus Pitch Matching. Journal of the American Academy of Audiology, 2015, 26, 205-212.	0.4	18
126	Enhancing Inhibition-Induced Plasticity in Tinnitus – Spectral Energy Contrasts in Tailor-Made Notched Music Matter. PLoS ONE, 2015, 10, e0126494.	1.1	18

#	Article	IF	CITATIONS
127	Commonalities and differences in the neural substrates of threat predictability in panic disorder and specific phobia. NeuroImage: Clinical, 2017, 14, 530-537.	1.4	17
128	Cortical processing of esophageal sensation is related to the representation of swallowing. NeuroReport, 2005, 16, 439-443.	0.6	16
129	Interhemispheric Support during Demanding Auditory Signal-in-Noise Processing. Cerebral Cortex, 2009, 19, 1440-1447.	1.6	15
130	Constraint-induced sound therapy for sudden sensorineural hearing loss – behavioral and neurophysiological outcomes. Scientific Reports, 2014, 4, 3927.	1.6	15
131	Cortical responses to the 2f1-f2 combination tone measured indirectly using magnetoencephalography. Journal of the Acoustical Society of America, 2007, 122, 992-1003.	0.5	14
132	Listening to Filtered Music as a Treatment Option for Tinnitus: A Review. Music Perception, 2010, 27, 327-330.	0.5	14
133	Study protocol: münster tinnitus randomized controlled clinical trial-2013 based on tailor-made notched music training (TMNMT). BMC Neurology, 2014, 14, 40.	0.8	14
134	Electromagnetic Correlates of Musical Expertise in Processing of Tone Patterns. PLoS ONE, 2012, 7, e30171.	1.1	13
135	Effects of musical training and event probabilities on encoding of complex tone patterns. BMC Neuroscience, 2013, 14, 51.	0.8	12
136	Tones and numbers: A combined EEG–MEG study on the effects of musical expertise in magnitude comparisons of audiovisual stimuli. Human Brain Mapping, 2014, 35, 5389-5400.	1.9	12
137	Bottom-up driven involuntary attention modulates auditory signal in noise processing. BMC Neuroscience, 2010, 11, 156.	0.8	11
138	Bottom-Up Driven Involuntary Auditory Evoked Field Change: Constant Sound Sequencing Amplifies But Does Not Sharpen Neural Activity. Journal of Neurophysiology, 2010, 103, 244-249.	0.9	11
139	Modulations of neural activity in auditory streaming caused by spectral and temporal alternation in subsequent stimuli: a magnetoencephalographic study. BMC Neuroscience, 2012, 13, 72.	0.8	11
140	Mismatch negativity to acoustical illusion of beat: How and where the change detection takes place?. NeuroImage, 2014, 100, 337-346.	2.1	11
141	Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex. PLoS ONE, 2016, 11, e0149933.	1.1	9
142	Prepare for scare—Impact of threat predictability on affective visual processing in spider phobia. Behavioural Brain Research, 2016, 307, 84-91.	1.2	9
143	Introducing a Virtual Lesion Model of Dysphagia Resulting from Pharyngeal Sensory Impairment. NeuroSignals, 2018, 26, 1-1.	0.5	9
144	Auditory Categorization of Man-Made Sounds Versus Natural Sounds by Means of MEG Functional Brain Connectivity. Frontiers in Neuroscience, 2019, 13, 1052.	1.4	9

#	Article	IF	CITATIONS
145	Involuntary Monitoring of Sound Signals in Noise Is Reflected in the Human Auditory Evoked N1m Response. PLoS ONE, 2012, 7, e31634.	1.1	9
146	Imagery Mismatch Negativity in Musicians. Annals of the New York Academy of Sciences, 2009, 1169, 173-177.	1.8	7
147	Broadened Population-Level Frequency Tuning in Human Auditory Cortex of Portable Music Player Users. PLoS ONE, 2011, 6, e17022.	1.1	7
148	Sensorimotor cortical activation in patients with sleep bruxism. Journal of Sleep Research, 2012, 21, 507-514.	1.7	6
149	Targeting Heterogeneous Findings in Neuronal Oscillations in Tinnitus: Analyzing MEG Novices and Mental Health Comorbidities. Frontiers in Psychology, 2018, 9, 235.	1.1	6
150	Song Perception by Professional Singers and Actors: An MEG Study. PLoS ONE, 2016, 11, e0147986.	1.1	6
151	Neural interactions within and beyond the critical band elicited by two simultaneously presented narrow band noises: A magnetoencephalographic study. Neuroscience, 2008, 151, 913-920.	1.1	5
152	Auditory evoked fields elicited by spectral, temporal, and spectral–temporal changes in human cerebral cortex. Frontiers in Psychology, 2012, 3, 149.	1.1	5
153	One Step Closer towards a Reliable Tinnitus Pitch-Match Frequency Determination Using Repetitive Recursive Matching. Audiology and Neuro-Otology, 2020, 25, 190-199.	0.6	5
154	Part III Introduction. Annals of the New York Academy of Sciences, 2009, 1169, 131-132.	1.8	3
155	Shared Neural Mechanisms for the Prediction of Own and Partner Musical Sequences after Short-term Piano Duet Training. Frontiers in Neuroscience, 2017, 11, 165.	1.4	3
156	Prefrontal oscillatory activity in auditory oddball paradigm studied with Synthetic Aperture Magnetometry. International Congress Series, 2004, 1270, 205-208.	0.2	2
157	Perceptual organization of auditory streaming-task relies on neural entrainment of the stimulus-presentation rate: MEG evidence. BMC Neuroscience, 2013, 14, 120.	0.8	2
158	Differential effects of temporal regularity on auditory-evoked response amplitude: a decrease in silence and increase in noise. Behavioral and Brain Functions, 2013, 9, 44.	1.4	2
159	A rhythmic deviation within a musical sequence induces neural activation in inferior parietal regions after short-term multisensory training. Multisensory Research, 2013, 26, 164.	0.6	2
160	Choice of test stimulus matters for pitch matching performance: Comparison between pure tone and narrow band noise. Hearing Research, 2019, 381, 107776.	0.9	2
161	Comparing pure tone and narrow band noise to measure tonal tinnitus pitch-match frequency. Progress in Brain Research, 2021, 262, 115-137.	0.9	2
162	Magnetic brain activity evoked and induced by visually presented words and nonverbal stimuli. , 2000, 37, 447.		2

#	Article	IF	CITATIONS
163	Decreased Cortical Somatosensory Finger Representation in Xâ€Linked Recessive Bulbospinal Neuronopathy (Kennedy Disease): A Magnetoencephalographic Study. Journal of Neuroimaging, 2010, 20, 16-21.	1.0	1
164	Prediction of treatment outcome in patients suffering from chronic tinnitus – from individual characteristics to early and long-term change. Journal of Psychosomatic Research, 2022, 157, 110794.	1.2	1
165	MEG Studies on Music. , 2019, , 943-955.		Ο
166	MEG Studies on Music. , 2019, , 1-13.		0