Maria Angeles Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution structure of .gamma.1-H and .gamma.1-P thionins from barley and wheat endosperm determined by proton NMR: a structural motif common to toxic arthropod proteins. Biochemistry, 1993, 32, 715-724.	1.2	217
2	NMR evidence of a short linear peptide that folds into a .betahairpin in aqueous solution. Journal of the American Chemical Society, 1993, 115, 5887-5888.	6.6	203
3	NMR Solution Structure of the Isolated N-Terminal Fragment of Protein-G B1 Domain. Evidence of Trifluoroethanol Induced Native-Like .betaHairpin Formation. Biochemistry, 1994, 33, 6004-6014.	1.2	197
4	Turn Residue Sequence Determines β-Hairpin Conformation in Designed Peptides. Journal of the American Chemical Society, 1997, 119, 175-183.	6.6	166
5	De novo design of a monomeric threeâ€stranded antiparallel βâ€sheet. Protein Science, 1999, 8, 854-865.	3.1	126
6	Conformational investigation of designed short linear peptides able to fold into β-hairpin structures in aqueous solution. Folding & Design, 1996, 1, 133-144.	4.5	89
7	Conformational Analysis of Peptides Corresponding to β-Hairpins and a β-Sheet that Represent the Entire Sequence of the α-Spectrin SH3 Domain. Journal of Molecular Biology, 1996, 255, 507-521.	2.0	84
8	Tryptophan residues: Scarce in proteins but strong stabilizers of βâ€hairpin peptides. Biopolymers, 2010, 94, 779-790.	1.2	81
9	1 H NMR and CD evidence of the folding of the isolated ribonuclease 50-61 fragment. FEBS Letters, 1987, 221, 320-324.	1.3	79
10	NMR Spectroscopy Reveals that RNase A is Chiefly Denatured in 40% Acetic Acid: Implications for Oligomer Formation by 3D Domain Swapping. Journal of the American Chemical Society, 2010, 132, 1621-1630.	6.6	69
11	CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. FEBS Journal, 1993, 211, 569-581.	0.2	66
12	Thermodynamic parameters for the helix-coil thermal transition of ribonuclease-S-peptide and derivatives from1H-nmr data. Biopolymers, 1986, 25, 1031-1053.	1.2	65
13	Factors involved in the stability of isolated β-sheets: Turn sequence, β-sheet twisting, and hydrophobic surface burial. Protein Science, 2004, 13, 1134-1147.	3.1	65
14	Crossâ€strand sideâ€chain interactions versus turn conformation in βâ€hairpins. Protein Science, 1997, 6, 2548-2560.	3.1	65
15	A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure EMBO Journal, 1995, 14, 2257-2268.	3.5	63
16	The turn sequence directs β―strand alignment in designed βâ€hairpins. Protein Science, 1999, 8, 2234-2244.	3.1	63
17	Structural Dissection of Crotalicidin, a Rattlesnake Venom Cathelicidin, Retrieves a Fragment with Antimicrobial and Antitumor Activity. Journal of Medicinal Chemistry, 2015, 58, 8553-8563.	2.9	63
18	Non-native local interactions in protein folding and stability: introducing a helical tendency in the all β-sheet α-spectrin SH3 domain. Journal of Molecular Biology, 1997, 268, 760-778.	2.0	60

#	Article	IF	CITATIONS
19	IBTM-Containing Gramicidin S Analogues:  Evidence for IBTM as a Suitable Type IIâ€~ β-Turn Mimetic1,2. Journal of the American Chemical Society, 1997, 119, 10579-10586.	6.6	57
20	13C(alpha) and 13C(beta) chemical shifts as a tool to delineate beta-hairpin structures in peptides. Journal of Biomolecular NMR, 2001, 19, 331-345.	1.6	57
21	DNA-induced α-Helical Structure in the NH2-terminal Domain of Histone H1. Journal of Biological Chemistry, 2001, 276, 46429-46435.	1.6	57
22	Structure of Stable Protein Folding Intermediates by Equilibrium Ï•-Analysis: The Apoflavodoxin Thermal Intermediate. Journal of Molecular Biology, 2004, 344, 239-255.	2.0	55
23	Contextâ€Dependence of the Contribution of Disulfide Bonds to βâ€Hairpin Stability. Chemistry - A European Journal, 2008, 14, 488-499.	1.7	55
24	Interactions Responsible for the pH Dependence of the beta-Hairpin Conformational Population Formed by a Designed Linear Peptide. FEBS Journal, 1995, 233, 283-292.	0.2	54
25	Three-Dimensional Structure of Acidic Fibroblast Growth Factor in Solution: Effects of Binding to a Heparin Functional Analog. Journal of Molecular Biology, 1996, 264, 162-178.	2.0	53
26	Thermodynamic Analysis of β-Hairpin-Forming Peptides from the Thermal Dependence of1H NMR Chemical Shifts. Journal of the American Chemical Society, 2002, 124, 14903-14909.	6.6	51
27	A study of the NH NMR signals of Gly-Gly-X-Ala tetrapeptides in H2O at low temperature Journal of Molecular Structure, 1986, 143, 435-438.	1.8	49
28	Periodic properties of proton conformational shifts in isolated protein helices. An experimental study. FEBS Journal, 1992, 207, 39-49.	0.2	49
29	Solution structure of acidic fibroblast growth factor bound to 1,3,6-naphthalenetrisulfonate: A minimal model for the anti-tumoral action of suramins and suradistas 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 281, 899-915.	2.0	49
30	1H-NMR Assignment and Solution Structure of Human Acidic Fibroblast Growth Factor Activated by Inositol Hexasulfate. Journal of Molecular Biology, 1994, 242, 81-98.	2.0	47
31	Position effect of crossâ€strand sideâ€chain interactions on βâ€hairpin formation. Protein Science, 2000, 9, 2151-2160.	3.1	47
32	NMR chemical shifts: a tool to characterize distortions of peptide and protein helices. Journal of the American Chemical Society, 1992, 114, 9676-9677.	6.6	46
33	β-Hairpin formation in aqueous solution and in the presence of trifluoroethanol: A1H and13C nuclear magnetic resonance conformational study of designed peptides. Biopolymers, 2005, 79, 150-162.	1.2	46
34	Therapeutic Index of Gramicidin S is Strongly Modulated by <scp>d</scp> -Phenylalanine Analogues at the β-Turn. Journal of Medicinal Chemistry, 2009, 52, 664-674.	2.9	46
35	1H NMR Structural Characterization of a Nonmitogenic, Vasodilatory, Ischemia-Protector and Neuromodulatory Acidic Fibroblast Growth Factor. Biochemistry, 2000, 39, 4982-4993.	1.2	41
36	The Long and Short Flavodoxins. Journal of Biological Chemistry, 2004, 279, 47177-47183.	1.6	39

MARIA ANGELES JIMENEZ

#	Article	IF	CITATIONS
37	A helixâ€ŧurn motif in the Câ€ŧerminal domain of histone H1. Protein Science, 2000, 9, 627-636.	3.1	38
38	Sequence Inversion and Phenylalanine Surrogates at the β-Turn Enhance the Antibiotic Activity of Gramicidin S. Journal of Medicinal Chemistry, 2010, 53, 4119-4129.	2.9	38
39	First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Science Translational Medicine, 2016, 8, 370ra184.	5.8	38
40	The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region. Journal of Biological Chemistry, 2015, 290, 12999-13015.	1.6	37
41	Helix-Stabilizing Nonpolar Interactions between Tyrosine and Leucine in Aqueous and TFE Solutions:Â 2D-1H NMR and CD Studies in Alanine-Lysine Peptidesâ€. Biochemistry, 1998, 37, 17318-17330.	1.2	36
42	Disulfide Bonds versus Trpâ<â <trp 3â€deriv<br="" in="" irregular="" loop="" nmr="" of="" pairs="" structure="" vammin="" βâ€hairpins:="">Peptides as a Case Study. ChemBioChem, 2009, 10, 902-910.</trp>	$ed_{.3}$	36
43	Structural analysis of peptides encompassing all α-helices of three α/β parallel proteins: Che-Y, flavodoxin and P21-Ras: Implications for α-Helix stability and the folding of α/β parallel proteins. Journal of Molecular Biology, 1995, 247, 648-669.	2.0	35
44	Cooperative Stabilization of a Molten Globule Apoflavodoxin Fragmentâ€. Biochemistry, 1998, 37, 10589-10596.	1.2	34
45	Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. Journal of Peptide Science, 2005, 11, 29-36.	0.8	34
46	Helicity of α(404–451) and β(394–445) tubulin Câ€ŧerminal recombinant peptides. Protein Science, 1999, 8 788-799.	^{8,} 3.1	34
47	Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Scientific Reports, 2016, 6, 38177.	1.6	34
48	Tendamistat (12-26) fragment. NMR characterization of isolated beta-turn folding intermediates. FEBS Journal, 1991, 200, 345-351.	0.2	33
49	Acylated flavonol sophorotriosides from pea shoots. Phytochemistry, 1995, 39, 1443-1446.	1.4	33
50	Alanine scan and 2 H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1328-1338.	1.4	32
51	1H-NMR assignment and folding of the isolated ribonuclease 21-42 fragment. FEBS Journal, 1988, 175, 101-109.	0.2	31
52	Structural and functional study of a conserved region in the uncoupling protein UCP1: the three matrix loops are involved in the control of transport 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 292, 137-149.	2.0	31
53	A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Research, 2010, 38, 5226-5241.	6.5	30
54	NMR Solution Structure of the C-Terminal Fragment 255-316 of Thermolysin: A Dimer Formed by Subunits Having the Native Structure. Biochemistry, 1994, 33, 14834-14847.	1.2	29

#	Article	IF	CITATIONS
55	<i>De novo</i> Design of Monomeric β-Hairpin and β-Sheet Peptides. , 2006, 340, 27-52.		29
56	Influence of the Bifunctional Chelator on the Pharmacokinetic Properties of ^{99m} Tc(CO) ₃ -Labeled Cyclic α-Melanocyte Stimulating Hormone Analog. Journal of Medicinal Chemistry, 2013, 56, 1961-1973.	2.9	29
57	An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: A CD and NMR study. Protein Science, 2009, 11, 214-220.	3.1	28
58	Solvent polarity-dependent structural refolding: A CD and NMR study of a 15 residue peptide. Proteins: Structure, Function and Bioinformatics, 1995, 23, 196-203.	1.5	27
59	Helical peptides from VEGF and Vammin hotspots for modulating the VEGF–VEGFR interaction. Organic and Biomolecular Chemistry, 2013, 11, 1896.	1.5	27
60	Peptide group chemical shift computation. Magnetic Resonance in Chemistry, 1992, 30, 1012-1018.	1.1	26
61	Helix Stop and Start Signals in Peptides and Proteins. Journal of Molecular Biology, 1994, 242, 487-496.	2.0	26
62	Solution Structure and Interaction with Basic and Acidic Fibroblast Growth Factor of a 3-kDa Human Platelet Factor-4 Fragment with Antiangiogenic Activity. Journal of Biological Chemistry, 2001, 276, 35723-35734.	1.6	26
63	β-Hairpin folding and stability: molecular dynamics simulations of designed peptides in aqueous solution. Journal of Peptide Science, 2004, 10, 546-565.	0.8	26
64	Structure and Immunogenicity of a Peptide Vaccine, Including the Complete HIV-1 gp41 2F5 Epitope. Journal of Biological Chemistry, 2014, 289, 6565-6580.	1.6	26
65	Design and Structure of an Equilibrium Protein Folding Intermediate: A Hint into Dynamical Regions of Proteins. Journal of Molecular Biology, 2010, 400, 922-934.	2.0	25
66	Anabaenaapoflavodoxin hydrogen exchange: On the stable exchange core of the α/l²(21345) flavodoxin-like family. Proteins: Structure, Function and Bioinformatics, 2001, 43, 476-488.	1.5	24
67	Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Molecular Microbiology, 2007, 63, 980-994.	1.2	24
68	Folding of the presequence of yeast pAPI into an amphipathic helix determines transport of the protein from the cytosol to the vacuole. Journal of Molecular Biology, 1997, 267, 1124-1138.	2.0	22
69	Disulfide and amide-bridged cyclic peptide analogues of the VEGF81–91 fragment: Synthesis, conformational analysis and biological evaluation. Bioorganic and Medicinal Chemistry, 2011, 19, 7526-7533.	1.4	22
70	Parallel solid-phase synthesis of a small library of linear and hydrocarbon-bridged analogues of VEGF81–91: Potential biological tools for studying the VEGF/VEGFR-1 interaction. Bioorganic and Medicinal Chemistry, 2011, 19, 1978-1986.	1.4	21
71	Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Archives of Biochemistry and Biophysics, 2019, 661, 149-167.	1.4	21
72	Penetrating the Blood-Brain Barrier with New Peptide–Porphyrin Conjugates Having anti-HIV Activity. Bioconjugate Chemistry, 2021, 32, 1067-1077.	1.8	21

#	Article	IF	CITATIONS
73	Design of Monomeric Water-Soluble β-Hairpin and β-Sheet Peptides. Methods in Molecular Biology, 2014, 1216, 15-52.	0.4	21
74	Conformational properties of the isolated 1–23 fragment of human hemoglobin α-chain. BBA - Proteins and Proteomics, 1988, 957, 380-389.	2.1	20
75	Three-Dimensional Solution Structure and Stability of Phage 434 Cro Proteinâ€,‡. Biochemistry, 1997, 36, 6424-6436.	1.2	20
76	Structural Insights into RNA Polymerase Recognition and Essential Function of Myxococcus xanthus CdnL. PLoS ONE, 2014, 9, e108946.	1.1	19
77	Helix formation by the phospholipase A238-59 fragment: Influence of chain shortening and dimerization monitored by nmr chemical shifts. Biopolymers, 1994, 34, 647-661.	1.2	18
78	The homologous angiogenin and ribonuclease N-terminal fragments fold into very similar helices when isolated. Biochemical and Biophysical Research Communications, 1992, 182, 1491-1498.	1.0	16
79	Micelleâ€Triggered βâ€Hairpin to αâ€Helix Transition in a 14â€Residue Peptide from a Cholineâ€Binding Repeat Pneumococcal Autolysin LytA. Chemistry - A European Journal, 2015, 21, 8076-8089.	of the 1.7	16
80	Trypanothione reductase inhibition and anti-leishmanial activity of all-hydrocarbon stapled α-helical peptides with improved proteolytic stability. European Journal of Medicinal Chemistry, 2018, 149, 238-247.	2.6	16
81	Amide 1H n.m.r. study of the folding of ribonuclease C-peptide. International Journal of Biological Macromolecules, 1985, 7, 66-70.	3.6	15
82	Synthesis of the Blood Circulating C-terminal Fragment of Insulin-like Growth Factor (IGF)-binding Protein-4 in Its Native Conformation. Journal of Biological Chemistry, 2005, 280, 18899-18907.	1.6	15
83	Design and NMR conformational study of a Î ² -sheet peptide based on Betanova and WW domains. Protein Science, 2006, 15, 2278-2289.	3.1	15
84	The ¹ H, ¹³ C, ¹⁵ N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy. Biopolymers, 2009, 91, 1018-1028.	1.2	14
85	Assessing the Protonation State of Drug Molecules:Â The Case of Aztreonam. Journal of Medicinal Chemistry, 2006, 49, 3235-3243.	2.9	13
86	Interaction between the N-terminal SH3 domain of Nckα and CD3É>-derived peptides: Non-canonical and canonical recognition motifs. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 110-117.	1.1	13
87	Comparison of hydrocarbon-and lactam-bridged cyclic peptides as dimerization inhibitors of Leishmania infantum trypanothione reductase. RSC Advances, 2015, 5, 55784-55794.	1.7	13
88	Rationally Modified Antimicrobial Peptides from the N-Terminal Domain of Human RNase 3 Show Exceptional Serum Stability. Journal of Medicinal Chemistry, 2021, 64, 11472-11482.	2.9	13
89	Folding propensities of synthetic peptide fragments covering the entire sequence of phage 434 Cro protein. Protein Science, 1999, 8, 1675-1688.	3.1	12
90	Insights into the determinants of �ï;½-sheet stability: 1H and 13Cï;½ï;½ï½½NMR conformational investigatio three-stranded antiparallel ��-sheet-forming peptides. Chemical Biology and Drug Design, 2008, 61, 177-188.	n of 1.2	12

#	Article	IF	CITATIONS
91	Structure-Function Dissection of Myxococcus xanthus CarD N-Terminal Domain, a Defining Member of the CarD_CdnL_TRCF Family of RNA Polymerase Interacting Proteins. PLoS ONE, 2015, 10, e0121322.	1.1	12
92	A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study. Journal of Biomolecular NMR, 2018, 72, 139-148.	1.6	12
93	Cyclic amino acid linkers stabilizing key loops of brain derived neurotrophic factor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 444-448.	1.0	11
94	Effect of Phosphorylation on the Structural Behaviour of Peptides Derived from the Intrinsically Disordered Câ€Terminal Domain of Histone H1.0. Chemistry - A European Journal, 2020, 26, 5970-5981.	1.7	11
95	Conformationally restricted PACAP27 analogues incorporating type II/II′ IBTM β-Turn Mimetics. Synthesis, NMR Structure Determination, and Binding Affinity. Bioorganic and Medicinal Chemistry, 2001, 9, 3173-3183.	1.4	10
96	Hints of Nonhierarchical Folding of Acidic Fibroblast Growth Factorâ€. Biochemistry, 2002, 41, 1923-1933.	1.2	10
97	Structural autonomy of a \hat{l}^2 -hairpin peptide derived from the pneumococcal choline-binding protein LytA. Protein Engineering, Design and Selection, 2011, 24, 113-122.	1.0	10
98	Quantitative interpretation of the helix coil transition in RNase a S-peptide. Journal of Molecular Structure, 1986, 143, 439-444.	1.8	9
99	Dihydrofolate reductase: control of the mode of substrate binding by aspartate 26. Protein Engineering, Design and Selection, 1989, 2, 627-631.	1.0	9
100	NMR solution structure of the activation domain of human procarboxypeptidase A2. Protein Science, 2003, 12, 296-305.	3.1	9
101	Trp-Trp pairs as β-hairpin stabilisers: Hydrogen-bonded versus non-hydrogen-bonded sites. Organic and Biomolecular Chemistry, 2011, 9, 5487.	1.5	9
102	NMR structure note: N-terminal domain of Thermus thermophilus CdnL. Journal of Biomolecular NMR, 2012, 53, 355-363.	1.6	9
103	NMR structure note: PHD domain from death inducer obliterator protein and its interaction with H3K4me3. Journal of Biomolecular NMR, 2013, 56, 183-190.	1.6	9
104	Emergence of structure through protein–protein interactions and pH changes in dually predicted coiled-coil and disordered regions of centrosomal proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1808-1819.	1.1	9
105	Nuclear Overhauser effects in aqueous solution as dynamic probes in short linear peptides. FEBS Letters, 1988, 239, 83-87.	1.3	8
106	Peptides Mimicking the β7/β8 Loop of HIV-1 Reverse Transcriptase p51 as "Hotspot-Targeted―Dimerization Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 811-817.	1.3	8
107	Conformational study of linear and cyclic peptides corresponding to the 276–284 epitope region of HSV gD-1. Biophysical Chemistry, 2003, 103, 51-65.	1.5	7
108	Characterization of the structure and self-recognition of the human centrosomal protein NA14: implications for stability and function. Protein Engineering, Design and Selection, 2011, 24, 883-892.	1.0	7

#	Article	IF	CITATIONS
109	NMR Structural Analysis of MC1R-Targeted Rhenium(I) Metallopeptides and Biological Evaluation of ^{99m} Tc(I) Congeners. Organometallics, 2012, 31, 5929-5939.	1.1	7
110	DMSO affects Aβ _{1–40} 's conformation and interactions with aggregation inhibitors as revealed by NMR. RSC Advances, 2015, 5, 69761-69764.	1.7	7
111	Roles of Amphipathicity and Hydrophobicity in the Micelleâ€Driven Structural Switch of a 14â€mer Peptide Core from a Cholineâ€Binding Repeat. Chemistry - A European Journal, 2018, 24, 5825-5839.	1.7	7
112	Turncoat Polypeptides: We Adapt to Our Environment. ChemBioChem, 2020, 21, 432-441.	1.3	7
113	NMR Solution Structure of the 205â ``316 C-Terminal Fragment of Thermolysin. An Example of Dimerization Coupled to Partial Unfoldingâ€. Biochemistry, 1997, 36, 11975-11983.	1.2	6
114	Structure of a simplified β-hairpin and its ATP complex. Archives of Biochemistry and Biophysics, 2013, 537, 62-71.	1.4	6
115	1H-NMR analysis of CD3-ε reveals the presence of turn-helix structures around the ITAM motif in an otherwise random coil cytoplasmic tail. , 1997, 42, 75-88.		5
116	NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation. BMC Biochemistry, 2010, 11, 7.	4.4	5
117	Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance. Biochemistry, 2017, 56, 5503-5511.	1.2	5
118	1H, 13C and 15N assignments of CdnL, an essential protein in Myxococcus xanthus. Biomolecular NMR Assignments, 2013, 7, 51-55.	0.4	4
119	Structural Insights into \hat{l}^2 -arrestin/CB1 Receptor Interaction: NMR and CD Studies on Model Peptides. International Journal of Molecular Sciences, 2020, 21, 8111.	1.8	4
120	Editorial: Peptides Targeting Protein-Protein Interactions: Methods and Applications. Frontiers in Molecular Biosciences, 2021, 8, 780106.	1.6	4
121	Separation and identification of ribonuclease S-peptide methyl esters by ion-exchange high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 1986, 360, 288-292.	1.8	3
122	Solution structure of the isolated ribonuclease C-terminal 112–124 fragment. BBA - Proteins and Proteomics, 1990, 1038, 322-329.	2.1	3
123	1H, 13C and 15N backbone and side chain resonance assignments of the C-terminal domain of CdnL from Myxococcus xanthus. Biomolecular NMR Assignments, 2009, 3, 9-12.	0.4	3
124	NMR Insights into the Structure-Function Relationships in the Binding of Melanocortin Analogues to the MC1R Receptor. Molecules, 2017, 22, 1189.	1.7	3
125	Peptides in biology and biomedicine: Walking towards the future. Archives of Biochemistry and Biophysics, 2019, 665, 20-22.	1.4	3
126	Pescador: the PEptides in Solution ConformAtion Database: Online Resource. Journal of Biomolecular NMR, 2002, 23, 85-102.	1.6	2

MARIA ANGELES JIMENEZ

#	Article	IF	CITATIONS
127	1H, 13C and 15N backbone and side chain resonance assignments of a Myxococcus xanthus anti-repressor with no known sequence homologues. Biomolecular NMR Assignments, 2009, 3, 37-40.	0.4	2
128	Structural insight into the XTACC3/XMAP215 interaction from CD and NMR studies on model peptides. Biopolymers, 2017, 107, e23039.	1.2	2
129	DD04107-Derived neuronal exocytosis inhibitor peptides: Evidences for synaptotagmin-1 as a putative target. Bioorganic Chemistry, 2021, 115, 105231.	2.0	2
130	Structural basis of Nrd1–Nab3 heterodimerization. Life Science Alliance, 2022, 5, e202101252.	1.3	2
131	Solution structure of the hypothetical protein TA0095 from <i>Thermoplasma acidophilum</i> : A novel superfamily with a twoâ€layer sandwich architecture. Protein Science, 2007, 16, 2278-2286.	3.1	1
132	Insights Into the Micelle-Induced β-Hairpin-to-α-Helix Transition of a LytA-Derived Peptide by Photo-CIDNP Spectroscopy. International Journal of Molecular Sciences, 2021, 22, 6666.	1.8	1
133	Inter-hairpin linker sequences determine the structure of the ββ-solenoid fold: a "bottom-up―study of pneumococcal LytA choline-binding module. International Journal of Biological Macromolecules, 2021, 190, 679-692.	3.6	1
134	The Gp41 Sequence Connecting Mper and Tm Domains Constitutes a Distinct HIV-1 "Fusion Peptide― Targeted by Neutralizing Antibodies. Biophysical Journal, 2014, 106, 708a-709a.	0.2	0
135	Frontispiece: Micelle-Triggered β-Hairpin to α-Helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0
136	Mode of Action of Antimicrobial Peptides: Long and Short Amphipathic Alpha-Helixes Use Different Mechanisms. Biophysical Journal, 2017, 112, 381a.	0.2	0
137	Frontispiece: Effect of Phosphorylation on the Structural Behaviour of Peptides Derived from the Intrinsically Disordered Câ&Terminal Domain of Histone H1.0. Chemistry - A European Journal, 2020, 26, .	1.7	0

138 PACAP27 Analogues Incorporating Type II/II' β-Turn Mimetics. , 2001, , 632-633.

0