Randy Strich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8782815/publications.pdf Version: 2024-02-01

RANDY STRICH

#	Article	IF	CITATIONS
1	Aberrant cyclin C nuclear release induces mitochondrial fragmentation and dysfunction in MED13L syndrome fibroblasts. IScience, 2022, 25, 103823.	1.9	3
2	Cyclin C-Cdk8 Kinase Phosphorylation of Rim15 Prevents the Aberrant Activation of Stress Response Genes. Frontiers in Cell and Developmental Biology, 2022, 10, 867257.	1.8	4
3	The Impact of Mitochondrial Fission-Stimulated ROS Production on Pro-Apoptotic Chemotherapy. Biology, 2021, 10, 33.	1.3	22
4	The extent of cyclin C promoter occupancy directs changes in stress-dependent transcription. Journal of Biological Chemistry, 2020, 295, 16280-16291.	1.6	6
5	Mitochondrial translocation of cyclin C stimulates intrinsic apoptosis through Bax recruitment. EMBO Reports, 2019, 20, e47425.	2.0	27
6	Cyclin C Regulated Oxidative Stress Responsive Transcriptome in <i>Mus musculus</i> Embryonic Fibroblasts. G3: Genes, Genomes, Genetics, 2019, 9, 1901-1908.	0.8	13
7	Synergistic repression of thyroid hyperplasia by cyclin C and Pten. Journal of Cell Science, 2019, 132, .	1.2	9
8	Cyclin C: The Story of a Non-Cycling Cyclin. Biology, 2019, 8, 3.	1.3	28
9	Cyclin C directly stimulates Drp1 GTP affinity to mediate stress-induced mitochondrial hyperfission. Molecular Biology of the Cell, 2019, 30, 302-311.	0.9	29
10	A complex molecular switch directs stress-induced cyclin C nuclear release through SCF ^{Grr1} -mediated degradation of Med13. Molecular Biology of the Cell, 2018, 29, 363-375.	0.9	29
11	Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants, 2018, 7, 13.	2.2	325
12	Cyclin C regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer-binding protein α. Journal of Biological Chemistry, 2017, 292, 8918-8932.	1.6	10
13	Rpl22 is required for IME1 mRNA translation and meiotic induction in S. cerevisiae. Cell Division, 2016, 11, 10.	1.1	15
14	In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1632-1640.	1.6	174
15	The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development. Nucleic Acids Research, 2015, 43, 115-128.	6.5	29
16	Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Molecular Genetics and Genomics, 2015, 290, 2031-2046.	1.0	11
17	Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development. Journal of Proteomics, 2015, 119, 30-44.	1.2	5
18	Cyclin C mediates stress-induced mitochondrial fission and apoptosis. Molecular Biology of the Cell, 2015, 26, 1030-1043.	0.9	45

RANDY STRICH

#	Article	IF	CITATIONS
19	Programmed Cell Death Initiation and Execution in Budding Yeast. Genetics, 2015, 200, 1003-1014.	1.2	37
20	Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C. Molecular Biology of the Cell, 2014, 25, 2807-2816.	0.9	39
21	Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Molecular Biology of the Cell, 2014, 25, 1396-1407.	0.9	37
22	Stress-Induced Nuclear-to-Cytoplasmic Translocation of Cyclin C Promotes Mitochondrial Fission in Yeast. Developmental Cell, 2014, 28, 161-173.	3.1	54
23	The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics. Microbial Cell, 2014, 1, 318-324.	1.4	18
24	The Cell Wall Sensors Mtl1, Wsc1, and Mid2 Are Required for Stress-Induced Nuclear to Cytoplasmic Translocation of Cyclin C and Programmed Cell Death in Yeast. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-15.	1.9	23
25	Oxidative-stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. Journal of Cell Science, 2012, 125, 1015-1026.	1.2	53
26	Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p. Molecular Biology of the Cell, 2012, 23, 1609-1617.	0.9	21
27	Meiosis-Specific Destruction of the Ume6p Repressor by the Cdc20-Directed APC/C. Molecular Cell, 2007, 27, 951-961.	4.5	63
28	Regulation of the Oxidative Stress Response Through Slt2p-Dependent Destruction of Cyclin C in Saccharomyces cerevisiae. Genetics, 2006, 172, 1477-1486.	1.2	55
29	A Unified Nomenclature for Protein Subunits of Mediator Complexes Linking Transcriptional Regulators to RNA Polymerase II. Molecular Cell, 2004, 14, 553-557.	4.5	230
30	Saccharomyces cerevisiae C-Type Cyclin Ume3p/Srb11p Is Required for Efficient Induction and Execution of Meiotic Development. Eukaryotic Cell, 2002, 1, 66-74.	3.4	27
31	Oxidative Stress-Induced Destruction of the Yeast C-Type Cyclin Ume3p Requires Phosphatidylinositol-Specific Phospholipase C and the 26S Proteasome. Molecular and Cellular Biology, 1999, 19, 3338-3348.	1.1	70