## Silke Hampel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8782785/publications.pdf Version: 2024-02-01



SILVE HAMDEL

| #  | Article                                                                                                                                                                                                                                                                                          | IF        | CITATIONS                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| 1  | Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine, 2008, 3, 175-182.                                                                                                                                                   | 3.3       | 210                          |
| 2  | Synthesis, Properties, and Applications of Ferromagnetic-Filled Carbon Nanotubes. Chemical Vapor<br>Deposition, 2006, 12, 380-387.                                                                                                                                                               | 1.3       | 133                          |
| 3  | Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review. BioMed Research<br>International, 2014, 2014, 1-17.                                                                                                                                                                    | 1.9       | 123                          |
| 4  | Magnetic force microscopy sensors using iron-filled carbon nanotubes. Journal of Applied Physics,<br>2006, 99, 104905.                                                                                                                                                                           | 2.5       | 116                          |
| 5  | Carbon Nanotubes Filled with Ferromagnetic Materials. Materials, 2010, 3, 4387-4427.                                                                                                                                                                                                             | 2.9       | 114                          |
| 6  | Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon, 2006, 44, 2316-2322.                                                                                                                                                                               | 10.3      | 100                          |
| 7  | Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery.<br>International Journal of Hyperthermia, 2008, 24, 496-505.                                                                                                                                       | 2.5       | 99                           |
| 8  | Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. Journal of<br>Applied Physics, 2005, 98, 074315.                                                                                                                                                            | 2.5       | 92                           |
| 9  | Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.                                                                                                                                                                                                  | 11.4      | 87                           |
| 10 | Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. International<br>Journal of Pharmaceutics, 2013, 448, 115-122.                                                                                                                                              | 5.2       | 80                           |
| 11 | Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. Journal of Nanoparticle Research, 2013, 15, 1.                                                                                                                                    | 1.9       | 73                           |
| 12 | Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. Journal of Pharmacy and Pharmacology, 2011, 63, 179-188.                                                                                                           | 2.4       | 71                           |
| 13 | Quasiballistic Transport of Dirac Fermions in a <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:m<br>Physical Paview Letters, 2013, 110, 186806</mml:m<br></mml:msub></mml:math<br> | i>Se<9mml | :mi> <ml:rn< td=""></ml:rn<> |
| 14 | Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death.<br>Nanotechnology, 2010, 21, 335101.                                                                                                                                                                | 2.6       | 64                           |
| 15 | Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon, 2006, 44, 1746-1753.                                                                                                                                                              | 10.3      | 62                           |
| 16 | Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2009, 321, 4067-4071.                                                                                                                                    | 2.3       | 58                           |
| 17 | Stepwise Current-Driven Release of Attogram Quantities of Copper Iodide Encapsulated in Carbon Nanotubes. Nano Letters, 2008, 8, 3120-3125.                                                                                                                                                      | 9.1       | 56                           |
| 18 | Incorporation of carbon nanotubes into a gelatin–catechin conjugate: Innovative approach for the preparation of anticancer materials. International Journal of Pharmaceutics, 2013, 446, 176-182.                                                                                                | 5.2       | 54                           |

SILKE HAMPEL

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Physica Status Solidi (A)<br>Applications and Materials Science, 2006, 203, 1064-1068.                                                        | 1.8 | 53        |
| 20 | Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. Materials, 2019, 12, 2889.                                                                                            | 2.9 | 53        |
| 21 | Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Delivery, 2017, 24, 162-180.                                                                                                            | 5.7 | 48        |
| 22 | A carbon-wrapped nanoscaled thermometer for temperature control in biological environments.<br>Nanomedicine, 2008, 3, 321-327.                                                                                            | 3.3 | 47        |
| 23 | Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. European Polymer<br>Journal, 2017, 90, 1-12.                                                                                              | 5.4 | 44        |
| 24 | Characterization of different carbon nanotubes for the development of a mucoadhesive drug delivery<br>system for intravesical treatment of bladder cancer. International Journal of Pharmaceutics, 2015,<br>479, 357-363. | 5.2 | 41        |
| 25 | Surface properties of CNTs and their interaction with silica. Journal of Colloid and Interface Science, 2014, 413, 43-53.                                                                                                 | 9.4 | 40        |
| 26 | Superparamagnetic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres.<br>Journal of Physical Chemistry C, 2012, 116, 22509-22517.                                                                    | 3.1 | 37        |
| 27 | Magnetic catechin–dextran conjugate as targeted therapeutic for pancreatic tumour cells. Journal of<br>Drug Targeting, 2014, 22, 408-415.                                                                                 | 4.4 | 37        |
| 28 | Chromium Trihalides Cr <i>X</i> <sub>3</sub> ( <i>X</i> = Cl, Br, I): Direct Deposition of Micro―and<br>Nanosheets on Substrates by Chemical Vapor Transport. Advanced Materials Interfaces, 2019, 6,<br>1901410.         | 3.7 | 37        |
| 29 | Chemical vapor growth and delamination of α-RuCl <sub>3</sub> nanosheets down to the monolayer limit. Nanoscale, 2018, 10, 19014-19022.                                                                                   | 5.6 | 36        |
| 30 | A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 1-10.                                | 4.3 | 35        |
| 31 | CoFe2O4-filled carbon nanotubes as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155018.                                                                                          | 5.5 | 35        |
| 32 | Electro-responsive graphene oxide hydrogels for skin bandages: The outcome of gelatin and trypsin<br>immobilization. International Journal of Pharmaceutics, 2018, 546, 50-60.                                            | 5.2 | 33        |
| 33 | Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics, 2019, 11, 3.                                                           | 4.5 | 33        |
| 34 | On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances, 2015, 5,<br>44902-44911.                                                                                                        | 3.6 | 31        |
| 35 | Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application.<br>Journal of Physics: Conference Series, 2007, 61, 820-824.                                                         | 0.4 | 30        |
| 36 | Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment. Pharmaceuticals, 2019, 12, 76.                                                                          | 3.8 | 30        |

SILKE HAMPEL

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Development of novel radiochemotherapy approaches targeting prostate tumor progenitor cells using nanohybrids. International Journal of Cancer, 2015, 137, 2492-2503.                                                          | 5.1  | 29        |
| 38 | Polyphenol Conjugates by Immobilized Laccase: The Green Synthesis of Dextran atechin.<br>Macromolecular Chemistry and Physics, 2016, 217, 1488-1492.                                                                           | 2.2  | 29        |
| 39 | Surface defects reduce Carbon Nanotube toxicity in vitro. Toxicology in Vitro, 2019, 60, 12-18.                                                                                                                                | 2.4  | 29        |
| 40 | Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels.<br>Pharmaceutics, 2015, 7, 413-437.                                                                                                   | 4.5  | 28        |
| 41 | Carbon Nanofibers and Carbon Nanotubes Sensitize Prostate and Bladder Cancer Cells to<br>Platinum-Based Chemotherapeutics. Journal of Biomedical Nanotechnology, 2014, 10, 463-477.                                            | 1.1  | 27        |
| 42 | Size-dependent nanographene oxide as a platform for efficient carboplatin release. Journal of<br>Materials Chemistry B, 2013, 1, 6107.                                                                                         | 5.8  | 24        |
| 43 | Facile Nanotube-Assisted Synthesis of Ternary Intermetallic Nanocrystals of the Ferromagnetic<br>Heusler Phase Co <sub>2</sub> FeGa. Crystal Growth and Design, 2013, 13, 2707-2710.                                           | 3.0  | 24        |
| 44 | Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro<br>study with dextran-catechin nanohybrids. European Journal of Pharmaceutics and Biopharmaceutics,<br>2018, 122, 176-185. | 4.3  | 24        |
| 45 | Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient.<br>Journal of Composites Science, 2020, 4, 14.                                                                                      | 3.0  | 22        |
| 46 | Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drugâ€delivery<br>systems. Journal of Applied Polymer Science, 2013, 130, 829-834.                                                               | 2.6  | 21        |
| 47 | Biocompatibility of Iron Filled Carbon Nanotubes <i>In Vitro</i> . Journal of Nanoscience and Nanotechnology, 2009, 9, 5709-5716.                                                                                              | 0.9  | 20        |
| 48 | Novel functional cisplatin carrier based on carbon nanotubes–quercetin nanohybrid induces<br>synergistic anticancer activity against neuroblastoma in vitro. RSC Advances, 2014, 4, 31378.                                     | 3.6  | 20        |
| 49 | Graphene Oxide - Gelatin Nanohybrids as Functional Tools for Enhanced Carboplatin Activity in<br>Neuroblastoma Cells. Pharmaceutical Research, 2015, 32, 2132-2143.                                                            | 3.5  | 20        |
| 50 | Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system.<br>Colloid and Polymer Science, 2013, 291, 699-708.                                                                        | 2.1  | 19        |
| 51 | Multi-walled carbon nanotube dispersion methodologies in alkaline media and their influence on<br>mechanical reinforcement of alkali-activated nanocomposites. Composites Part B: Engineering, 2021,<br>209, 108559.           | 12.0 | 18        |
| 52 | Functional Gelatin-Carbon Nanotubes Nanohybrids With Enhanced Antibacterial Activity.<br>International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 439-447.                                           | 3.4  | 17        |
| 53 | Catalyst-free Growth of Single Crystalline Bi <sub>2</sub> Se <sub>3</sub> Nanostructures for Quantum Transport Studies. Crystal Growth and Design, 2015, 15, 4272-4278.                                                       | 3.0  | 17        |
| 54 | Chemical vapor transport and characterization of MnBi2Se4. Journal of Crystal Growth, 2017, 459, 81-86.                                                                                                                        | 1.5  | 16        |

Silke Hampel

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Electrochemical Magnetization Switching and Energy Storage in Manganese Oxide filled Carbon<br>Nanotubes. Scientific Reports, 2017, 7, 13625.                                                          | 3.3  | 16        |
| 56 | Synthesis of Ferromagnetic Filled Carbon Nanotubes and their Biomedical Application. Advances in Science and Technology, 2006, 49, 74.                                                                 | 0.2  | 15        |
| 57 | Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 16725-16733.                                                                            | 3.1  | 14        |
| 58 | Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries. Molecules, 2020, 25, 1064.                                                                                                       | 3.8  | 14        |
| 59 | A nanoscaled contactless thermometer for biological systems. Physica Status Solidi (B): Basic<br>Research, 2007, 244, 4092-4096.                                                                       | 1.5  | 13        |
| 60 | The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon, 2012, 50, 1706-1709.                                                                                                               | 10.3 | 13        |
| 61 | Investigations of mussel-inspired polydopamine deposition on WC and Al 2 O 3 particles: The influence of particle size and material. Materials Chemistry and Physics, 2014, 148, 624-630.              | 4.0  | 13        |
| 62 | Diameter controlled growth of iron-filled carbon nanotubes. Physica Status Solidi (B): Basic<br>Research, 2006, 243, 3091-3094.                                                                        | 1.5  | 12        |
| 63 | Resistance-heating of carbon nanotube yarns in different atmospheres. Carbon, 2018, 133, 232-238.                                                                                                      | 10.3 | 12        |
| 64 | Simulation and synthesis of α-MoCl3 nanosheets on substrates by short time chemical vapor transport.<br>Nano Structures Nano Objects, 2019, 19, 100324.                                                | 3.5  | 12        |
| 65 | Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties. Beilstein Journal of Nanotechnology, 2018, 9, 1024-1034.                 | 2.8  | 11        |
| 66 | Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation. Beilstein Journal of Nanotechnology, 2017, 8, 1307-1317. | 2.8  | 10        |
| 67 | Synthesis of (Li2Fe1–yMny)SO Antiperovskites with Comprehensive Investigations of (Li2Fe0.5Mn0.5)SO<br>as Cathode in Li-ion Batteries. Inorganic Chemistry, 2020, 59, 15626-15635.                     | 4.0  | 10        |
| 68 | Systematic Investigations of Annealing and Functionalization of Carbon Nanotube Yarns. Molecules, 2020, 25, 1144.                                                                                      | 3.8  | 10        |
| 69 | Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. Journal of Carbon Research, 2021,<br>7, 3.                                                                                           | 2.7  | 10        |
| 70 | Functionalized carbon nanotubes as transporters for antisense oligodeoxynucleotides. Journal of<br>Materials Chemistry B, 2014, 2, 7000-7008.                                                          | 5.8  | 9         |
| 71 | Tailored nanoparticles and wires of Sn, Ge and Pb inside carbon nanotubes. Carbon, 2016, 101, 352-360.                                                                                                 | 10.3 | 9         |
| 72 | Morphology of MWCNT in dependence on N-doping, synthesized using a sublimation-based CVD method<br>at 750â€Ă°C. Diamond and Related Materials, 2018, 86, 8-14.                                         | 3.9  | 9         |

SILKE HAMPEL

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local<br>Treatment of Squamous Cell Carcinoma. Materials, 2022, 15, 1648.                                                                                     | 2.9  | 9         |
| 74 | When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Medicinal Chemistry, 2019, 11, 2205-2231.                                                                                                                            | 2.3  | 8         |
| 75 | Optical and transport properties of few quintuple-layers of Bi2-xSbxSe3 nanoflakes synthesized by hydrothermal method. Journal of Alloys and Compounds, 2019, 804, 272-280.                                                                                 | 5.5  | 8         |
| 76 | Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms. Nanotechnology, 2014, 25, 405102.                                                                      | 2.6  | 7         |
| 77 | Thermodynamic Evaluation and Chemical Vapor Transport of Few-Layer WTe <sub>2</sub> . Crystal<br>Growth and Design, 2020, 20, 7341-7349.                                                                                                                    | 3.0  | 7         |
| 78 | Tuning the electrochemical properties by anionic substitution of Li-rich antiperovskite<br>(Li <sub>2</sub> Fe)S <sub>1â^'<i>x</i></sub> Se <sub><i>x</i></sub> O cathodes for Li-ion batteries.<br>Journal of Materials Chemistry A, 2021, 9, 23095-23105. | 10.3 | 7         |
| 79 | Systematic evaluation of oligodeoxynucleotide binding and hybridization to modified multi-walled carbon nanotubes. Journal of Nanobiotechnology, 2017, 15, 53.                                                                                              | 9.1  | 6         |
| 80 | Carbon nanotube-assisted synthesis of ferromagnetic Heusler nanoparticles of Fe <sub>3</sub> Ga<br>(Nano-Galfenol). Journal of Materials Chemistry C, 2018, 6, 1255-1263.                                                                                   | 5.5  | 6         |
| 81 | Fe1-xNix Alloy Nanoparticles Encapsulated Inside Carbon Nanotubes: Controlled Synthesis, Structure and Magnetic Properties. Nanomaterials, 2018, 8, 576.                                                                                                    | 4.1  | 6         |
| 82 | Effect of surfactant concentration on the morphology and thermoelectric power factor of PbTe<br>nanostructures prepared by a hydrothermal route. Physica E: Low-Dimensional Systems and<br>Nanostructures, 2021, 125, 114396.                               | 2.7  | 6         |
| 83 | Layered α-TiCl <sub>3</sub> : Microsheets on YSZ Substrates for Ethylene Polymerization with Enhanced<br>Activity. Chemistry of Materials, 2019, 31, 5305-5313.                                                                                             | 6.7  | 5         |
| 84 | The cross-talk between lateral sheet dimensions of pristine graphene oxide nanoparticles and Ni <sup>2+</sup> adsorption. RSC Advances, 2021, 11, 11388-11397.                                                                                              | 3.6  | 5         |
| 85 | Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field. Molecules, 2021, 26, 7001.                                                                                                       | 3.8  | 5         |
| 86 | Carbon Nanotubes Filled with Carboplatin: Towards Carbon Nanotube-Supported Delivery of Chemotherapeutic Agents. Carbon Nanostructures, 2011, , 247-258.                                                                                                    | 0.1  | 4         |
| 87 | Compositional analysis of multi-element magnetic nanoparticles with a combined NMR and TEM approach. Journal of Nanoparticle Research, 2017, 19, 1.                                                                                                         | 1.9  | 3         |
| 88 | Investigation of the surface properties of different highly aligned N-MWCNT carpets. Carbon, 2019, 141, 99-106.                                                                                                                                             | 10.3 | 3         |
| 89 | Synthesis of micro- and nanosheets of CrCl <sub>3</sub> –RuCl <sub>3</sub> solid solution by chemical vapour transport. Nanoscale, 2022, 14, 10483-10492.                                                                                                   | 5.6  | 3         |
| 90 | Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From<br>Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors. ,<br>2011, , 97-124.                                       |      | 1         |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Direct Deposition of (Bi <i><sub>x</sub></i> Sb <sub>1–<i>x</i></sub> ) <sub>2</sub> Te <sub>3</sub><br>Nanosheets on Si/SiO <sub>2</sub> Substrates by Chemical Vapor Transport. Crystal Growth and<br>Design, 2022, 22, 2354-2363. | 3.0 | 1         |