
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8781931/publications.pdf Version: 2024-02-01

FRIC O FREED

#	Article	IF	CITATIONS
1	HIV-1 Gag Proteins: Diverse Functions in the Virus Life Cycle. Virology, 1998, 251, 1-15.	1.1	600
2	Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14889-14894.	3.3	474
3	HIV-1 assembly, release and maturation. Nature Reviews Microbiology, 2015, 13, 484-496.	13.6	448
4	Viral Late Domains. Journal of Virology, 2002, 76, 4679-4687.	1.5	393
5	HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation. Journal of Molecular Biology, 2011, 410, 582-608.	2.0	368
6	Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 955-960.	3.3	324
7	Retrovirus budding. Virus Research, 2004, 106, 87-102.	1.1	269
8	The Role of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins in Virus Infection. Journal of Biological Chemistry, 1995, 270, 23883-23886.	1.6	252
9	Human Apolipoprotein B mRNA-editing Enzyme-catalytic Polypeptide-like 3G (APOBEC3G) Is Incorporated into HIV-1 Virions through Interactions with Viral and Nonviral RNAs. Journal of Biological Chemistry, 2004, 279, 35822-35828.	1.6	250
10	Cell-Type-Dependent Targeting of Human Immunodeficiency Virus Type 1 Assembly to the Plasma Membrane and the Multivesicular Body. Journal of Virology, 2004, 78, 1552-1563.	1.5	239
11	Role of the Gag Matrix Domain in Targeting Human Immunodeficiency Virus Type 1 Assembly. Journal of Virology, 2000, 74, 2855-2866.	1.5	218
12	Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the Matrix Amino Terminus. Journal of Virology, 1999, 73, 4136-4144.	1.5	216
13	A Cell-penetrating Helical Peptide as a Potential HIV-1 Inhibitor. Journal of Molecular Biology, 2008, 378, 565-580.	2.0	204
14	Genetic Evidence for an Interaction between Human Immunodeficiency Virus Type 1 Matrix and α-Helix 2 of the gp41 Cytoplasmic Tail. Journal of Virology, 2000, 74, 3548-3554.	1.5	194
15	The Late Domain of Human Immunodeficiency Virus Type 1 p6 Promotes Virus Release in a Cell Type-Dependent Manner. Journal of Virology, 2002, 76, 105-117.	1.5	186
16	Multifunctional RNA Nanoparticles. Nano Letters, 2014, 14, 5662-5671.	4.5	181
17	Real-Time Visualization of HIV-1 GAG Trafficking in Infected Macrophages. PLoS Pathogens, 2008, 4, e1000015.	2.1	180
18	HIV-1 replication. Somatic Cell and Molecular Genetics, 2001, 26, 13-33.	0.7	174

#	Article	IF	CITATIONS
19	Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits. Science, 2014, 343, 653-656.	6.0	165
20	Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity. Journal of Virology, 2004, 78, 1026-1031.	1.5	151
21	Ion-Abrasion Scanning Electron Microscopy Reveals Surface-Connected Tubular Conduits in HIV-Infected Macrophages. PLoS Pathogens, 2009, 5, e1000591.	2.1	151
22	Lipids and membrane microdomains in HIV-1 replication. Virus Research, 2009, 143, 162-176.	1.1	151
23	Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1. Nature Reviews Microbiology, 2007, 5, 912-916.	13.6	146
24	Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. Advances in Pharmacology, 2007, 55, 347-387.	1.2	143
25	Structural basis for viral late-domain binding to Alix. Nature Structural and Molecular Biology, 2007, 14, 194-199.	3.6	142
26	Human Immunodeficiency Virus Type 1 N-Terminal Capsid Mutants That Exhibit Aberrant Core Morphology and Are Blocked in Initiation of Reverse Transcription in Infected Cells. Journal of Virology, 2001, 75, 9357-9366.	1.5	135
27	IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein. Cell Reports, 2015, 13, 145-156.	2.9	133
28	Role of Lipid Rafts in Virus Replication. Advances in Virus Research, 2005, 64, 311-358.	0.9	128
29	Novel approaches to inhibiting HIV-1 replication. Antiviral Research, 2010, 85, 119-141.	1.9	124
30	Role of Matrix in an Early Postentry Step in the Human Immunodeficiency Virus Type 1 Life Cycle. Journal of Virology, 1998, 72, 4116-4126.	1.5	123
31	Transport of Human Immunodeficiency Virus Type 1 Pseudoviruses across the Blood-Brain Barrier: Role of Envelope Proteins and Adsorptive Endocytosis. Journal of Virology, 2001, 75, 4681-4691.	1.5	122
32	In Vitro Resistance to the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PA-457 (Bevirimat). Journal of Virology, 2006, 80, 10957-10971.	1.5	113
33	HIV-1 Maturation Inhibitor Bevirimat Stabilizes the Immature Gag Lattice. Journal of Virology, 2011, 85, 1420-1428.	1.5	107
34	HIV-1 infection of non-dividing cells. Nature, 1994, 369, 107-108.	13.7	105
35	Relationship between Human Immunodeficiency Virus Type 1 Gag Multimerization and Membrane Binding. Journal of Virology, 2000, 74, 5142-5150.	1.5	105
36	Point Mutations in the HIV-1 Matrix Protein Turn Off the Myristyl Switch. Journal of Molecular Biology, 2007, 366, 574-585.	2.0	100

#	Article	IF	CITATIONS
37	Defects in Human Immunodeficiency Virus Budding and Endosomal Sorting Induced by TSG101 Overexpression. Journal of Virology, 2003, 77, 6507-6519.	1.5	96
38	The Role of Lipids in Retrovirus Replication. Viruses, 2010, 2, 1146-1180.	1.5	96
39	Cellular Motor Protein KIF-4 Associates with Retroviral Gag. Journal of Virology, 1999, 73, 10508-10513.	1.5	94
40	Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology, 2007, 360, 27-35.	1.1	93
41	Structure of the Myristylated Human Immunodeficiency Virus Type 2 Matrix Protein and the Role of Phosphatidylinositol-(4,5)-Bisphosphate in Membrane Targeting. Journal of Molecular Biology, 2008, 382, 434-447.	2.0	93
42	An Alix Fragment Potently Inhibits HIV-1 Budding. Journal of Biological Chemistry, 2007, 282, 3847-3855.	1.6	90
43	Association of Human Immunodeficiency Virus Type 1 Gag with Membrane Does Not Require Highly Basic Sequences in the Nucleocapsid: Use of a Novel Gag Multimerization Assay. Journal of Virology, 2005, 79, 14131-14140.	1.5	82
44	Functional role of Alix in HIV-1 replication. Virology, 2009, 391, 284-292.	1.1	82
45	Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein. Journal of Molecular Biology, 2016, 428, 1637-1655.	2.0	82
46	HIV-1 and the host cell: an intimate association. Trends in Microbiology, 2004, 12, 170-177.	3.5	81
47	Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV- 1maturation inhibitor bevirimat. Retrovirology, 2010, 7, 36.	0.9	81
48	New Insights into HIV Assembly and Trafficking. Physiology, 2011, 26, 236-251.	1.6	79
49	Phosphorylation of Residue 131 of HIV-1 Matrix Is Not Required for Macrophage Infection. Cell, 1997, 88, 171-173.	13.5	72
50	HIV Type 1 Gag as a Target for Antiviral Therapy. AIDS Research and Human Retroviruses, 2012, 28, 54-75.	0.5	72
51	Evidence that Productive Human Immunodeficiency Virus Type 1 Assembly Can Occur in an Intracellular Compartment. Journal of Virology, 2009, 83, 5375-5387.	1.5	69
52	A Two-Pronged Structural Analysis of Retroviral Maturation Indicates that Core Formation Proceeds by a Disassembly-Reassembly Pathway Rather than a Displacive Transition. Journal of Virology, 2013, 87, 13655-13664.	1.5	68
53	TIM-family proteins inhibit HIV-1 release. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3699-707.	3.3	68
54	Global Rescue of Defects in HIV-1 Envelope Glycoprotein Incorporation: Implications for Matrix Structure. PLoS Pathogens, 2013, 9, e1003739.	2.1	67

#	Article	IF	CITATIONS
55	Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Virologica Sinica, 2019, 34, 119-134.	1.2	67
56	Late Domain-Dependent Inhibition of Equine Infectious Anemia Virus Budding. Journal of Virology, 2004, 78, 724-732.	1.5	66
57	MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production. Proceedings of the United States of America, 2014, 111, E2676-83.	3.3	66
58	Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E182-90.	3.3	65
59	Cellular IP6 Levels Limit HIV Production while Viruses that Cannot Efficiently Package IP6 Are Attenuated for Infection and Replication. Cell Reports, 2019, 29, 3983-3996.e4.	2.9	65
60	Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology, 2006, 356, 217-224.	1.1	63
61	Crystallographic and Functional Analysis of the ESCRT-I /HIV-1 Gag PTAP Interaction. Structure, 2010, 18, 1536-1547.	1.6	62
62	HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses, 2020, 12, 940.	1.5	62
63	The HIV–TSG101 interface: recent advances in a budding field. Trends in Microbiology, 2003, 11, 56-59.	3.5	61
64	Virus maturation as a new HIV-1 therapeutic target. Expert Opinion on Therapeutic Targets, 2009, 13, 895-908.	1.5	61
65	Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain. Retrovirology, 2011, 8, 28.	0.9	61
66	The role of matrix in HIV-1 envelope glycoprotein incorporation. Trends in Microbiology, 2014, 22, 372-378.	3.5	60
67	The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology, 2010, 400, 137-144.	1.1	59
68	Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding. EMBO Journal, 2013, 32, 538-551.	3.5	59
69	Mutation of Dileucine-Like Motifs in the Human Immunodeficiency Virus Type 1 Capsid Disrupts Virus Assembly, Gag-Gag Interactions, Gag-Membrane Binding, and Virion Maturation. Journal of Virology, 2006, 80, 7939-7951.	1.5	58
70	Functional Replacement of a Retroviral Late Domain by Ubiquitin Fusion. Traffic, 2008, 9, 1972-1983.	1.3	58
71	Structural and Functional Insights into the HIV-1 Maturation Inhibitor Binding Pocket. PLoS Pathogens, 2012, 8, e1002997.	2.1	58
72	A Mutation in the Human Immunodeficiency Virus Type 1 Gag Protein Destabilizes the Interaction of the Envelope Protein Subunits gp120 and gp41. Journal of Virology, 2006, 80, 2405-2417.	1.5	56

#	Article	IF	CITATIONS
73	Inhibition of HIV-1 Replication by Amphotericin B Methyl Ester. Journal of Biological Chemistry, 2006, 281, 28699-28711.	1.6	56
74	Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. Journal of Cell Biology, 2015, 209, 435-452.	2.3	56
75	Quenching protein dynamics interferes with HIV capsid maturation. Nature Communications, 2017, 8, 1779.	5.8	56
76	GGA and Arf Proteins Modulate Retrovirus Assembly and Release. Molecular Cell, 2008, 30, 227-238.	4.5	55
77	The cell biology of HIV-1 and other retroviruses. Retrovirology, 2006, 3, 77.	0.9	53
78	The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Virology, 2011, 421, 253-265.	1.1	51
79	Human Immunodeficiency Virus Type 1 N-Terminal Capsid Mutants Containing Cores with Abnormally High Levels of Capsid Protein and Virtually No Reverse Transcriptase. Journal of Virology, 2003, 77, 12592-12602.	1.5	50
80	HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8467-8471.	3.3	48
81	Inhibition of Human Immunodeficiency Virus Type 1 Assembly and Release by the Cholesterol-Binding Compound Amphotericin B Methyl Ester: Evidence for Vpu Dependence. Journal of Virology, 2008, 82, 9776-9781.	1.5	46
82	Hydrazone- and Hydrazide-ContainingN-Substituted Glycines as Peptoid Surrogates for Expedited Library Synthesis:  Application to the Preparation of Tsg101-Directed HIV-1 Budding Antagonists. Organic Letters, 2006, 8, 5165-5168.	2.4	45
83	Impact of Human Immunodeficiency Virus Type 1 Resistance to Protease Inhibitors on Evolution of Resistance to the Maturation Inhibitor Bevirimat (PA-457). Journal of Virology, 2009, 83, 4884-4894.	1.5	45
84	Dual-acting stapled peptides target both HIV-1 entry and assembly. Retrovirology, 2013, 10, 136.	0.9	45
85	Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 190-197.	1.4	44
86	A stable immature lattice packages IP ₆ for HIV capsid maturation. Science Advances, 2021, 7, .	4.7	44
87	A Single Polymorphism in HIV-1 Subtype C SP1 Is Sufficient To Confer Natural Resistance to the Maturation Inhibitor Bevirimat. Antimicrobial Agents and Chemotherapy, 2011, 55, 3324-3329.	1.4	42
88	Identification of Conserved Residues in the Human Immunodeficiency Virus Type 1 Principal Neutralizing Determinant That Are Involved in Fusion. AIDS Research and Human Retroviruses, 1991, 7, 807-811.	0.5	41
89	Cells Induced to Express a Human Immunodeficiency Virus Type 1 Envelope Gene Mutant Inhibit the Spread of Wild-Type Virus. Human Gene Therapy, 1992, 3, 391-397.	1.4	41
90	Site-specific Mutations in HIV-1 gp41 Reveal a Correlation between HIV-1-mediated Bystander Apoptosis and Fusion/Hemifusion. Journal of Biological Chemistry, 2007, 282, 16899-16906.	1.6	41

#	Article	IF	CITATIONS
91	Molecular Characterization of Feline Immunodeficiency Virus Budding. Journal of Virology, 2008, 82, 2106-2119.	1.5	41
92	Myristate Exposure in the Human Immunodeficiency Virus Type 1 Matrix Protein Is Modulated by pH. Biochemistry, 2010, 49, 9551-9562.	1.2	40
93	The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities. Nano Letters, 2016, 16, 1746-1753.	4.5	40
94	Mutations in the HIV-1 envelope glycoprotein can broadly rescue blocks at multiple steps in the virus replication cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9040-9049.	3.3	40
95	Macrophages and Cell-Cell Spread of HIV-1. Viruses, 2010, 2, 1603-1620.	1.5	39
96	VIROLOGY: Rafting with Ebola. Science, 2002, 296, 279-279.	6.0	38
97	PSGL-1 restricts HIV-1 infectivity by blocking virus particle attachment to target cells. Proceedings of the United States of America, 2020, 117, 9537-9545.	3.3	38
98	HIV-1 Gag: Flipped out for PI(4,5)P2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11101-11102.	3.3	36
99	Recent progress in antiretrovirals – lessons from resistance. Drug Discovery Today, 2008, 13, 424-432.	3.2	36
100	S-acylation of SARS-CoV-2 spike protein: Mechanistic dissection, inÂvitro reconstitution and role in viral infectivity. Journal of Biological Chemistry, 2021, 297, 101112.	1.6	36
101	Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation. Nature Communications, 2018, 9, 1861.	5.8	35
102	Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. Journal of Virology, 2019, 93, .	1.5	34
103	Photoinduced Reactivity of the HIV-1 Envelope Glycoprotein with a Membrane-Embedded Probe Reveals Insertion of Portions of the HIV-1 Gp41 Cytoplasmic Tail into the Viral Membrane. Biochemistry, 2008, 47, 1977-1983.	1.2	33
104	Cleavage of the Murine Leukemia Virus Transmembrane Env Protein by Human Immunodeficiency Virus Type 1 Protease: Transdominant Inhibition by Matrix Mutations. Journal of Virology, 1998, 72, 9621-9627.	1.5	32
105	Identification of an HIV-1 Mutation in Spacer Peptide 1 That Stabilizes the Immature CA-SP1 Lattice. Journal of Virology, 2016, 90, 972-978.	1.5	31
106	ARRDC1 as a mediator of microvesicle budding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4025-4026.	3.3	30
107	Analysis of HIV-1 Envelope Mutants and Pseudotyping of Replication-Defective HIV-1 Vectors by Genetic Complementation. AIDS Research and Human Retroviruses, 1992, 8, 1669-1677.	0.5	29
108	Reevaluation of the Requirement for TIP47 in Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Incorporation. Journal of Virology, 2013, 87, 3561-3570.	1.5	29

#	Article	IF	CITATIONS
109	Pravastatin does not have a consistent antiviral effect in chronically HIV-infected individuals on antiretroviral therapy. Aids, 2005, 19, 1109-1111.	1.0	28
110	SAR by Oximeâ€Containing Peptide Libraries: Application to Tsg101 Ligand Optimization. ChemBioChem, 2008, 9, 2000-2004.	1.3	28
111	TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5705-5714.	3.3	28
112	Myosin-X is essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes. Journal of Cell Communication and Signaling, 2019, 13, 209-224.	1.8	28
113	CryoET structures of immature HIV Gag reveal six-helix bundle. Communications Biology, 2021, 4, 481.	2.0	28
114	Methods for the Study of HIV-1 Assembly. Methods in Molecular Biology, 2008, 485, 163-184.	0.4	28
115	HIV-1 Vpu Accessory Protein Induces Caspase-mediated Cleavage of IRF3 Transcription Factor. Journal of Biological Chemistry, 2014, 289, 35102-35110.	1.6	27
116	Evidence of a Role for Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (SNARE) Machinery in HIV-1 Assembly and Release. Journal of Biological Chemistry, 2011, 286, 29861-29871.	1.6	26
117	The Cytoplasmic Tail of Retroviral Envelope Glycoproteins. Progress in Molecular Biology and Translational Science, 2015, 129, 253-284.	0.9	26
118	Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain. Journal of Virology, 2016, 90, 768-779.	1.5	26
119	Reversion of a Human Immunodeficiency Virus Type 1 Matrix Mutation Affecting Gag Membrane Binding, Endogenous Reverse Transcriptase Activity, and Virus Infectivity. Journal of Virology, 1999, 73, 4728-4737.	1.5	26
120	Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities. Journal of Virology, 2016, 90, 5657-5664.	1.5	25
121	Mechanism of Viral Glycoprotein Targeting by Membrane-Associated RING-CH Proteins. MBio, 2021, 12, .	1.8	25
122	Effects of Gag Mutation and Processing on Retroviral Dimeric RNA Maturation. Journal of Virology, 2006, 80, 1242-1249.	1.5	24
123	FIV Gag: Virus assembly and host-cell interactions. Veterinary Immunology and Immunopathology, 2010, 134, 3-13.	0.5	23
124	Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation. Journal of Molecular Biology, 2015, 427, 1413-1427.	2.0	23
125	Resistance to Second-Generation HIV-1 Maturation Inhibitors. Journal of Virology, 2019, 93, .	1.5	23
126	HIV-1 Matrix Trimerization-Impaired Mutants Are Rescued by Matrix Substitutions That Enhance Envelope Glycoprotein Incorporation. Journal of Virology, 2019, 94, .	1.5	23

#	Article	IF	CITATIONS
127	Complex I polymorphisms, bigenomic heterogeneity, and family history in Virginians with Parkinson's disease. Journal of the Neurological Sciences, 2006, 247, 224-230.	0.3	21
128	NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein. Viruses, 2015, 7, 2210-2229.	1.5	21
129	HIV-1 Gag: An Emerging Target for Antiretroviral Therapy. Current Topics in Microbiology and Immunology, 2015, 389, 171-201.	0.7	20
130	Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. MBio, 2021, 12, .	1.8	20
131	Effect of Mutations in the Human Immunodeficiency Virus Type 1 Protease on Cleavage of the gp41 Cytoplasmic Tail. Journal of Virology, 2010, 84, 3121-3126.	1.5	19
132	Identification of potent maturation inhibitors against HIV-1 clade C. Scientific Reports, 2016, 6, 27403.	1.6	19
133	Studies on the Role of the V3 Loop in Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Function. AIDS Research and Human Retroviruses, 1992, 8, 1611-1618.	0.5	18
134	Wild-Type and YMDD Mutant Murine Leukemia Virus Reverse Transcriptases Are Resistant to 2′,3′-Dideoxy-3′-Thiacytidine. Journal of Virology, 2000, 74, 6669-6674.	1.5	18
135	PSGL-1 Inhibits the Incorporation of SARS-CoV and SARS-CoV-2 Spike Glycoproteins into Pseudovirions and Impairs Pseudovirus Attachment and Infectivity. Viruses, 2021, 13, 46.	1.5	18
136	Genomic tagging of endogenous human ESCRT-I complex preserves ESCRT-mediated membrane-remodeling functions. Journal of Biological Chemistry, 2019, 294, 16266-16281.	1.6	16
137	Anti-HIV-1 Therapeutics: From FDA-approved Drugs to Hypothetical Future Targets. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 70-74.	3.4	16
138	Mechanisms of HIV Type 1-Induced Cognitive Impairment: Evidence for Hippocampal Cholinergic Involvement with Overstimulation of the VIPergic System by the Viral Coat Protein Core. AIDS Research and Human Retroviruses, 2002, 18, 1189-1195.	0.5	14
139	Mechanisms of enveloped virus release. Virus Research, 2004, 106, 85-86.	1.1	14
140	Peptide Inhibitors of HIV-1 Egress. ACS Chemical Biology, 2008, 3, 745-747.	1.6	13
141	Defects in cellular sorting and retroviral assembly induced by GGA overexpression. BMC Cell Biology, 2009, 10, 72.	3.0	13
142	SERINC proteins potentiate antiviral type I IFN production and proinflammatory signaling pathways. Science Signaling, 2021, 14, eabc7611.	1.6	13
143	Identification of a Structural Element in HIV-1 Gag Required for Virus Particle Assembly and Maturation. MBio, 2018, 9, .	1.8	12
144	Plasma Membrane Anchoring and Gag:Gag Multimerization on Viral RNA Are Critical Properties of HIV-1 Gag Required To Mediate Efficient Genome Packaging. MBio, 2021, 12, e0325421.	1.8	12

#	Article	IF	CITATIONS
145	HIV-1 Gag trafficking. Future HIV Therapy, 2007, 1, 427-438.	0.5	11
146	Influenza Virus Not cRAFTy Enough to Dodge Viperin. Cell Host and Microbe, 2007, 2, 71-72.	5.1	11
147	Application of ring-closing metathesis macrocyclization to the development of Tsg101-binding antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 318-321.	1.0	11
148	High-Mannose But Not Complex-Type Glycosylation of Tetherin Is Required for Restriction of HIV-1 Release. Viruses, 2018, 10, 26.	1.5	11
149	Authentication Analysis of MT-4 Cells Distributed by the National Institutes of Health AIDS Reagent Program. Journal of Virology, 2019, 93, .	1.5	11
150	Enhanced Transmissibility and Decreased Virulence of HIV-1 CRF07_BC May Explain Its Rapid Expansion in China. Microbiology Spectrum, 2022, 10, .	1.2	11
151	A second-site suppressor significantly improves the defective phenotype imposed by mutation of an aromatic residue in the N-terminal domain of the HIV-1 capsid protein. Virology, 2007, 359, 105-115.	1.1	10
152	Elucidation of New Binding Interactions with the Human Tsg101 Protein Using Modified HIV-1 Gag-p6 Derived Peptide Ligands. ACS Medicinal Chemistry Letters, 2011, 2, 337-341.	1.3	10
153	The autophagy protein ATG9A promotes HIV-1 infectivity. Retrovirology, 2019, 16, 18.	0.9	10
154	Relationship between Human Immunodeficiency Virus Type 1 Gag Multimerization and Membrane Binding. Journal of Virology, 2000, 74, 5142-5150.	1.5	10
155	In COS Cells Vpu Can Both Stabilize Tetherin Expression and Counteract Its Antiviral Activity. PLoS ONE, 2014, 9, e111628.	1.1	9
156	The Vpu-interacting Protein SGTA Regulates Expression of a Non-glycosylated Tetherin Species. Scientific Reports, 2016, 6, 24934.	1.6	9
157	Elucidating the Basis for Permissivity of the MT-4 T-Cell Line to Replication of an HIV-1 Mutant Lacking the gp41 Cytoplasmic Tail. Journal of Virology, 2020, 94, .	1.5	9
158	Generation and validation of a highly sensitive bioluminescent HIV-1 reporter vector that simplifies measurement of virus release. Retrovirology, 2020, 17, 12.	0.9	8
159	Targeting the HIV entry, assembly and release pathways for anti-HIV gene therapy. Virology, 2011, 415, 95-106.	1.1	7
160	Viral latency and potential eradication of HIV-1. Expert Review of Anti-Infective Therapy, 2012, 10, 855-857.	2.0	6
161	Antiviral Innate Immunity: Editorial Overview. Journal of Molecular Biology, 2014, 426, 1129-1132.	2.0	6
162	Mutations in the feline immunodeficiency virus envelope glycoprotein confer resistance to a dominant–negative fragment of Tsg101 by enhancing infectivity and cell-to-cell virus transmission. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1143-1152.	1.4	5

#	Article	IF	CITATIONS
163	Rafting through the palms: S-acylation of SARS-CoV-2 spike protein induces lipid reorganization. Developmental Cell, 2021, 56, 2787-2789.	3.1	5
164	Welcome to Viruses: A New Open-Access, Multidisciplinary Forum for Virology. Viruses, 2009, 1, 1-2.	1.5	4
165	"Expand and Clickâ€ŧ A New Method for Labeling HIV-1 Envelope Glycoproteins. Cell Chemical Biology, 2017, 24, 548-550.	2.5	4
166	The viral protein U (Vpu)-interacting host protein ATP6V0C down-regulates cell-surface expression of tetherin and thereby contributes to HIV-1 release. Journal of Biological Chemistry, 2020, 295, 7327-7340.	1.6	4
167	A Triazinone Derivative Inhibits HIV†Replication by Interfering with Reverse Transcriptase Activity. ChemMedChem, 2016, 11, 2320-2326.	1.6	3
168	Heavy metal protease takes a tiki torch to HIV assembly. Nature Immunology, 2019, 20, 668-669.	7.0	3
169	Structural and Mechanistic Studies of the Rare Myristoylation Signal of the Feline Immunodeficiency Virus. Journal of Molecular Biology, 2020, 432, 4076-4091.	2.0	3
170	HIV-1 packs in PACSIN2 for cell-to-cell spread. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6885-6887.	3.3	2
171	Expression of Concern: Jiang, H.; Mei, YF. SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses 2021, 13, 2056. Viruses, 2022, 14, 12.	1.5	2
172	Activation of virus uptake through induction of macropinocytosis with a novel polymerizing peptide. FASEB Journal, 2014, 28, 106-116.	0.2	1
173	Evidence of a role for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery in HIV-1 assembly and release Journal of Biological Chemistry, 2014, 289, 14967.	1.6	1
174	Getting IN on Viral RNA Condensation and Virion Maturation. Cell, 2016, 166, 1082-1083.	13.5	1
175	The Role of Lipids in Retroviral Replication. , 2018, , 353-399.		1
176	Maturation of HIV-1. Science, 2021, 373, 621-622.	6.0	1
177	EMBO World Lecture Course †Virus†Host: Partners in Pathogenesis'. Future Virology, 2010, 5, 379-383.	0.9	0
178	Announcing the 2015 Viruses Young Investigator Prize and Graduate Student/Postdoctoral Fellow Travel Awards. Viruses, 2015, 7, 707-708.	1.5	0
179	HIV-1 Envelope Glycoprotein Trafficking and Viral Transmission. Proceedings (mdpi), 2020, 50, 17.	0.2	0
180	PSGL-1 Restricts HIV-1 Infectivity by Blocking Virus Particle Attachment to Target Cells. Proceedings (mdpi), 2020, 50, 77.	0.2	0

