
Weitai Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8781862/publications.pdf Version: 2024-02-01

\λ/ειτλι \λ/ιι

#	Article	IF	CITATIONS
1	Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catalysis Reviews - Science and Engineering, 2022, 64, 286-355.	5.7	20
2	Light-mediated CO2-responsiveness of metallopolymer microgels. Chinese Chemical Letters, 2022, 33, 1445-1449.	4.8	4
3	Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. RSC Advances, 2022, 12, 5105-5117.	1.7	35
4	Reversible Regulating the Substrate Specificity of Enzymes in Microgels by a Phase Transition in Polymer Networks. ACS Macro Letters, 2022, 11, 26-32.	2.3	6
5	Flexible Prussian Blueâ€Au Fibers as Robust Peroxidase – Like Nanozymes for Wearable Hydrogen Peroxide and Uric Acid Monitoring. Electroanalysis, 2022, 34, 1763-1771.	1.5	10
6	Preparation of highly branched polyolefins by controlled chainâ€walking olefin polymerization. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
7	Conjugated polymers based on metalla-aromatic building blocks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
8	Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. Journal of Hazardous Materials, 2021, 402, 123535.	6.5	95
9	Stabilization of silver nanoparticles in crosslinked polymer colloids through chelation for catalytic degradation of p-nitroaniline in aqueous medium. Chemical Physics Letters, 2021, 763, 138263.	1.2	25
10	Silver nanoparticles supported on smart polymer microgel system for highly proficient catalytic reduction of Cr ⁺⁶ to Cr ⁺³ with formic acid. Applied Organometallic Chemistry, 2021, 35, e6405.	1.7	15
11	Physicochemical aspects of inorganic nanoparticles stabilized in <i>N</i> -vinyl caprolactam based microgels for various applications. RSC Advances, 2021, 11, 978-995.	1.7	4
12	Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Critical Reviews in Analytical Chemistry, 2020, 50, 513-537.	1.8	48
13	Salt-Enhanced CO ₂ -Responsiveness of Microgels. ACS Macro Letters, 2020, 9, 1611-1616.	2.3	6
14	One-pot HTST synthesis of responsive fluorescent ZnO@apo-enzyme composite microgels for intracellular glucometry. RSC Advances, 2020, 10, 26566-26578.	1.7	2
15	Synthesis and characterization of poly(N-isopropylmethacrylamide-acrylic acid) smart polymer microgels for adsorptive extraction of copper(II) and cobalt(II) from aqueous medium: kinetic and thermodynamic aspects. Environmental Science and Pollution Research, 2020, 27, 28169-28182.	2.7	26
16	Coreâ€shell microgel stabilized silver nanoparticles for catalytic reduction of aryl nitro compounds. Applied Organometallic Chemistry, 2020, 34, e5742.	1.7	20
17	Tuning catalysis of boronic acids in microgels by in situ reversible structural variations. RSC Advances, 2020, 10, 3734-3744.	1.7	0
18	Systematic study of catalytic degradation of nitrobenzene derivatives using core@shell composite micro particles as catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124646.	2.3	17

WEITAI WU

#	Article	IF	CITATIONS
19	Observation of Unusual Thermoresponsive Volume Phase Transition Behavior of Cubic Poly(<i>N</i> -isopropylacrylamide) Microgels. ACS Macro Letters, 2020, 9, 266-271.	2.3	9
20	Fundamentals and applications of acrylamide based microgels and their hybrids: a review. RSC Advances, 2019, 9, 13838-13854.	1.7	19
21	Catalytic reduction of toxic dyes in the presence of silver nanoparticles impregnated core-shell composite microgels. Journal of Cleaner Production, 2019, 211, 855-864.	4.6	101
22	Enhanced catalysis of gold nanoparticles in microgels upon on site altering the gold–polymer interface interaction. Journal of Catalysis, 2019, 369, 462-468.	3.1	33
23	Adsorptive removal of heavy metal ions using polystyrene-poly(N-isopropylmethacrylamide-acrylic) Tj ETQq1 2019, 277, 522-531.	1 0.784314 rg 2.3	gBT /Overloc 98
24	Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environmental Technology (United Kingdom), 2019, 40, 2027-2036.	1.2	68
25	Synthesis and characterization of CO ₂ -sensitive temperature-responsive catalytic poly(ionic liquid) microgels. Polymer Chemistry, 2018, 9, 2887-2896.	1.9	15
26	Advancement in Multi-Functional Poly(styrene)-Poly(N-isopropylacrylamide) Based Core–Shell Microgels and their Applications. Polymer Reviews, 2018, 58, 288-325.	5.3	47
27	Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol. Journal of Environmental Sciences, 2018, 72, 43-52.	3.2	34
28	Photothermal Möbius aromatic metallapentalenofuran and its NIR-responsive copolymer. Polymer Chemistry, 2018, 9, 2092-2100.	1.9	25
29	Synthesis and characterization of ureido-derivatized UCST-type poly(ionic liquid) microgels. Polymer Chemistry, 2018, 9, 1439-1447.	1.9	12
30	Synthesis and characterization of poly(N-isopropylmethacrylamide-co-acrylic acid) microgels for in situ fabrication and stabilization of silver nanoparticles for catalytic reduction of o-nitroaniline in aqueous medium. Reactive and Functional Polymers, 2018, 132, 89-97.	2.0	44
31	Synthesis and Characterization of pH-Responsive Organic–Inorganic Hybrid Material with Excellent Catalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1872-1884.	1.9	22
32	Silver Nanoparticles Engineered Polystyreneâ€Poly(Nâ€isopropylmethacrylamideâ€acrylic acid) Core Shell Hybrid Polymer Microgels for Catalytic Reduction of Congo Red. Macromolecular Chemistry and Physics, 2018, 219, 1800211.	1.1	47
33	Cylindrical NIR-Responsive Metallopolymer Containing Möbius Metalla-aromatics. ACS Macro Letters, 2018, 7, 1034-1038.	2.3	22
34	Synthesis of polymer macrogels with rapid and significant response to glucose concentration changes. RSC Advances, 2017, 7, 55945-55956.	1.7	3
35	Glucose-responsive microgels based on apo-enzyme recognition. Polymer Chemistry, 2016, 7, 2847-2857.	1.9	23
36	Assembly of polythiophenes on responsive polymer microgels for the highly selective detection of ammonia gas. Polymer Chemistry, 2016, 7, 3179-3188.	1.9	7

Weitai Wu

#	Article	IF	CITATIONS
37	Bioinspired synthesis of poly(phenylboronic acid) microgels with high glucose selectivity at physiological pH. Polymer Chemistry, 2016, 7, 6500-6512.	1.9	10
38	Synthesis and characterization of responsive poly(anionic liquid) microgels. Polymer Chemistry, 2016, 7, 5463-5473.	1.9	17
39	Immobilization of sulfur in microgels for lithium–sulfur battery. Chemical Communications, 2016, 52, 4525-4528.	2.2	36
40	Electrochemical synthesis of polymer microgels. Polymer Chemistry, 2015, 6, 3979-3987.	1.9	8
41	Enhanced enzymatic hydrolysis of cellulose in microgels. Chemical Communications, 2015, 51, 10502-10505.	2.2	6
42	Switchable glucose-responsive volume phase transition behavior of poly(phenylboronic acid) microgels. Polymer Chemistry, 2015, 6, 8306-8318.	1.9	14
43	Synthesis and characterization of ammonia-responsive polymer microgels. Polymer Chemistry, 2015, 6, 8331-8342.	1.9	5
44	Glucose-mediated catalysis of Au nanoparticles in microgels. Chemical Communications, 2015, 51, 16068-16071.	2.2	15
45	Highly efficient solid polymer electrolytes using ion containing polymer microgels. Polymer Chemistry, 2015, 6, 1052-1055.	1.9	7
46	Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polymer Chemistry, 2014, 5, 186-194.	1.9	43
47	Phenylboronic acid modified silver nanoparticles for colorimetric dynamic analysis of glucose. Biosensors and Bioelectronics, 2014, 52, 188-195.	5.3	39
48	Tailoring the glucose-responsive volume phase transition behaviour of Ag@poly(phenylboronic acid) hybrid microgels: from monotonous swelling to monotonous shrinking upon adding glucose at physiological pH. Polymer Chemistry, 2014, 5, 2352.	1.9	25
49	Copper on responsive polymer microgels: a recyclable catalyst exhibiting tunable catalytic activity. Chemical Communications, 2014, 50, 14217-14220.	2.2	11
50	Graphene@Poly(phenylboronic acid)s Microgels with Selectively Glucose-Responsive Volume Phase Transition Behavior at a Physiological pH. Macromolecules, 2014, 47, 6055-6066.	2.2	46
51	Synthesis and Characterization of Dextran–Tyramine-Based H2O2-Sensitive Microgels. Macromolecules, 2014, 47, 6067-6076.	2.2	11
52	Responsive Au@polymer hybrid microgels for the simultaneous modulation and monitoring of Au-catalyzed chemical reaction. Journal of Materials Chemistry A, 2014, 2, 9514.	5.2	46
53	A fluorescent double-network-structured hybrid nanogel as embeddable nanoglucometer for intracellular glucometry. Biomaterials Science, 2013, 1, 421.	2.6	22
54	Responsive Materials for Selfâ€ <scp>R</scp> egulated Insulin Delivery. Macromolecular Bioscience, 2013, 13, 1464-1477.	2.1	73

WEITAI WU

#	Article	IF	CITATIONS
55	One-pot aqueous synthesis of sub-10 nm responsive nanogels. Chemical Communications, 2013, 49, 6534.	2.2	7
56	A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomaterialia, 2013, 9, 4546-4557.	4.1	92
57	Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. Biosensors and Bioelectronics, 2013, 48, 94-99.	5.3	57
58	One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels. Chemical Communications, 2012, 48, 11751.	2.2	57
59	A Fluorescent Responsive Hybrid Nanogel for Closed-Loop Control of Glucose. Journal of Diabetes Science and Technology, 2012, 6, 892-901.	1.3	39
60	A colloidal supra-structure of responsive microgels as a potential cell scaffold. Soft Matter, 2012, 8, 12034.	1.2	17
61	Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels. Biomaterials, 2012, 33, 7115-7125.	5.7	100
62	Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery. Biomaterials, 2011, 32, 9876-9887.	5.7	96
63	Engineering of Phenylboronic Acid Based Glucoseâ€Sensitive Microgels with 4â€Vinylpyridine for Working at Physiological pH and Temperature. Macromolecular Chemistry and Physics, 2011, 212, 1510-1514.	1.1	52
64	A Multifuntional Nanoplatform Based on Responsive Fluorescent Plasmonic ZnOâ€Au@PEG Hybrid Nanogels. Advanced Functional Materials, 2011, 21, 2830-2839.	7.8	61
65	Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials, 2011, 32, 598-609.	5.7	115
66	In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31, 3023-3031.	5.7	192
67	Glucoseâ€Mediated Assembly of Phenylboronic Acid Modified CdTe/ZnTe/ZnS Quantum Dots for Intracellular Glucose Probing. Angewandte Chemie - International Edition, 2010, 49, 6554-6558.	7.2	118
68	Engineering oligo(ethylene glycol)-based thermosensitive microgels for drug delivery applications. Polymer, 2010, 51, 3926-3933.	1.8	50
69	Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials, 2010, 31, 7555-7566.	5.7	213
70	Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 2010, 31, 8371-8381.	5.7	199
71	Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic–inorganic hybrid microgels. Biosensors and Bioelectronics, 2010, 25, 2603-2610.	5.3	62
72	Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Reviews, 2010, 1, 5730.	3.7	61

WEITAI WU

#	Article	IF	CITATIONS
73	Smart Coreâ^'Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Chemistry of Materials, 2010, 22, 1966-1976.	3.2	163
74	Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self-Regulated Insulin Release at Physiological pH. ACS Nano, 2010, 4, 4831-4839.	7.3	267
75	Tunable Photoluminescence of Ag Nanocrystals in Multiple-Sensitive Hybrid Microgels. Chemistry of Materials, 2009, 21, 2851-2861.	3.2	70
76	Optically pH and H ₂ O ₂ Dual Responsive Composite Colloids through the Directed Assembly of Organic Dyes on Responsive Microgels. Chemistry of Materials, 2009, 21, 4905-4913.	3.2	27
77	Optical detection of glucose by CdS quantum dots immobilized in smart microgels. Chemical Communications, 2009, , 4390.	2.2	119