List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8781806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. Journal of Materials Chemistry B, 2015, 3, 4001-4008.	5.8	246
2	Smart Hybridization of TiO ₂ Nanorods and Fe ₃ O ₄ Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for Highâ€Rate Lithium Storage. Advanced Functional Materials, 2015, 25, 3341-3350.	14.9	183
3	Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter, 2015, 11, 4235-4241.	2.7	143
4	Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). Journal of Materials Chemistry, 2012, 22, 22467.	6.7	138
5	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	10.0	125
6	Flexible and robust MoS2–graphene hybrid paper cross-linked by a polymer ligand: a high-performance anode material for thin film lithium-ion batteries. Chemical Communications, 2013, 49, 10305.	4.1	122
7	Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. Journal of Materials Chemistry B, 2015, 3, 1187-1192.	5.8	116
8	Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage. Nano Energy, 2016, 30, 347-354.	16.0	107
9	Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Soft Matter, 2016, 12, 5420-5428.	2.7	97
10	Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer. Macromolecules, 2010, 43, 5762-5770.	4.8	94
11	High-concentration organic solutions of poly(styrene-co-butadiene-co-styrene)-modified graphene sheets exfoliated from graphite. Carbon, 2011, 49, 3529-3537.	10.3	86
12	The production of flexible and transparent conductive films of carbon nanotube/graphene networks coordinated by divalent metal (Cu, Ca or Mg) ions. Carbon, 2011, 49, 3371-3375.	10.3	77
13	Delicate ternary heterostructures achieved by hierarchical co-assembly of Ag and Fe ₃ O ₄ nanoparticles on MoS ₂ nanosheets: morphological and compositional synergy in reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 2726-2733.	10.3	76
14	Super Tough and Intelligent Multibond Network Physical Hydrogels Facilitated by Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577.	14.6	74
15	Constructing Novel Si@SnO2 Core–Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 7092-7100.	8.0	69
16	Hierarchical assembly of SnO ₂ nanowires on MnO ₂ nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 6477-6483.	10.3	66
17	Dual cross-linked networks hydrogels with unique swelling behavior and high mechanical strength: Based on silica nanoparticle and hydrophobic association. Journal of Colloid and Interface Science, 2012, 381, 107-115.	9.4	64
18	In situ synthesis of poly(acrylic acid) physical hydrogels from silicananoparticles. Soft Matter, 2012, 8, 1058-1063.	2.7	61

#	Article	IF	CITATIONS
19	Synergistic effect of Cu2+-coordinated carbon nanotube/graphene network on the electrical and mechanical properties of polymer nanocomposites. Journal of Materials Chemistry, 2011, 21, 18723.	6.7	56
20	Coordinationâ€Driven Hierarchical Assembly of Silver Nanoparticles on MoS ₂ Nanosheets for Improved Lithium Storage. Chemistry - an Asian Journal, 2014, 9, 1519-1524.	3.3	55
21	Homogeneous and Real Super Tough Multi-Bond Network Hydrogels Created through a Controllable Metal Ion Permeation Strategy. ACS Applied Materials & Interfaces, 2019, 11, 42856-42864.	8.0	51
22	Robust and self-healable nanocomposite physical hydrogel facilitated by the synergy of ternary crosslinking points in a single network. Journal of Materials Chemistry B, 2016, 4, 6221-6227.	5.8	49
23	Study of multi-monomer melt-grafting onto polypropylene in an extruder. Polymer International, 2000, 49, 1677-1683.	3.1	48
24	<i>h</i> â€BN Nanosheets as 2D Substrates to Load 0D Fe ₃ O ₄ Nanoparticles: A Hybrid Anode Material for Lithiumâ€ion Batteries. Chemistry - an Asian Journal, 2016, 11, 828-833.	3.3	48
25	Aluminothermic reduction enabled synthesis of silicon hollow microspheres from commercialized silica nanoparticles for superior lithium storage. Chemical Communications, 2016, 52, 8401-8404.	4.1	48
26	Facile and Green Production of Impurityâ€Free Aqueous Solutions of WS ₂ Nanosheets by Direct Exfoliation in Water. Small, 2016, 12, 6703-6713.	10.0	44
27	Predictive supracolloidal helices from patchy particles. Scientific Reports, 2014, 4, 7021.	3.3	42
28	Elaborately Designed Hierarchical Heterostructures Consisting of Carbonâ€Coated TiO ₂ (B) Nanosheets Decorated with Fe ₃ O ₄ Nanoparticles for Remarkable Synergy in Highâ€Rate Lithium Storage. Advanced Materials Interfaces, 2015, 2, 1500239.	3.7	41
29	Tuning the solubility of boron nitridenanosheets in organic solvents by using block copolymer as a "Janus―modifier. Chemical Communications, 2013, 49, 388-390.	4.1	38
30	A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids. Chemical Communications, 2013, 49, 1642.	4.1	34
31	Tough superabsorbent poly(acrylic acid) nanocomposite physical hydrogels fabricated by a dually cross-linked single network strategy. Chinese Chemical Letters, 2016, 27, 312-316.	9.0	33
32	Polystyrene-grafted graphene with improved solubility in organic solvents and its compatibility with polymers. Materials Chemistry and Physics, 2011, 130, 794-799.	4.0	32
33	Frustrated Crystallization in the Coupled Viscoelastic Phase Separation. Macromolecules, 2012, 45, 8336-8346.	4.8	30
34	Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyreneâ€based polymers. Journal of Applied Polymer Science, 2008, 109, 3525-3532.	2.6	28
35	Harnessing Dynamic Covalent Bonds in Patchy Nanoparticles: Creating Shape-Shifting Building Blocks for Rational and Responsive Self-Assembly. Journal of Physical Chemistry Letters, 2013, 4, 1221-1226.	4.6	27
36	Phase transition temperature controllable poly(acrylamide-co-acrylic acid) nanocomposite physical hydrogels with high strength. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1261-1269.	3.8	27

#	Article	IF	CITATIONS
37	A universal strategy for the <i>in situ</i> synthesis of TiO ₂ (B) nanosheets on pristine carbon nanomaterials for high-rate lithium storage. Journal of Materials Chemistry A, 2018, 6, 7070-7079.	10.3	27
38	Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Advances, 2014, 4, 41543-41550.	3.6	26
39	Multi-bond network hydrogels with robust mechanical and self-healable properties. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1253-1267.	3.8	26
40	Synthesis of hyperbranched aromatic polyamide–imide and its grafting onto multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2007, 106, 2413-2421.	2.6	25
41	Biomimetic Gradient Hydrogel Actuators with Ultrafast Thermo-Responsiveness and High Strength. ACS Applied Materials & Interfaces, 2022, 14, 32541-32550.	8.0	25
42	How can multi-bond network hydrogels dissipate energy more effectively: an investigation on the relationship between network structure and properties. Soft Matter, 2020, 16, 4407-4413.	2.7	24
43	Processable and Robust MoS ₂ Paper Chemically Crossâ€Linked with Polymeric Ligands by the Coordination of Divalent Metal Ions. Chemistry - an Asian Journal, 2013, 8, 817-823.	3.3	23
44	Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking — The roles of the dual crosslinking points. Chinese Journal of Polymer Science (English Edition), 2017, 35, 25-35.	3.8	22
45	Water absorbency of poly(sodium acrylate) superabsorbents crosslinked with modified poly(ethylene) Tj ETQq1 I	L 0,78431 2.6	4 rgBT /Over
46	Compatibilization and toughening of immiscible ternary blends of polyamide 6, polypropylene (or a) Tj ETQq0 0 0 1652-1658.) rgBT /Ove 2.6	erlock 10 Tf 18
47	Super-tough and rapidly self-recoverable multi-bond network hydrogels facilitated by 2-ureido-4[1H]-pyrimidone dimers. Chinese Chemical Letters, 2021, 32, 521-524.	9.0	17
48	Investigation of hydrolysis in poly(ethylene terephthalate) by FTIR-ATR. Chinese Journal of Polymer Science (English Edition), 2014, 32, 230-235.	3.8	16
49	Improved Mechanical Properties of Graphene Oxide/Poly(ethylene oxide) Nanocomposites by Dynamic Interfacial Interaction of Coordination. Australian Journal of Chemistry, 2014, 67, 121.	0.9	16
50	Styreneâ€assisted melt freeâ€radical grafting of pentaerythritol triacrylate onto polypropylene and its crystallization behavior. Journal of Applied Polymer Science, 2008, 108, 1737-1743.	2.6	14
51	Influences of component ratio of minor phases and charge sequence on the morphology and mechanical properties of PP/PS/PA6 ternary blends. Polymer Bulletin, 2011, 66, 841-852.	3.3	13
52	Correlation of Morphology Evolution with Superior Mechanical Properties in PA6/PS/PP/SEBS Blends Compatibilized by Multi-phase Compatibilizers. Chinese Journal of Polymer Science (English Edition), 2018, 36, 848-858.	3.8	11
53	Direct Exfoliation of Highâ€Quality, Atomically Thin MoSe ₂ Layers in Water. Advanced Sustainable Systems, 2018, 2, 1700107.	5.3	11
54	Coordinationâ€Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. Small, 2020, 16, 1902779.	10.0	11

#	Article	IF	CITATIONS
55	Carboxyl Terminated Polymer Chain Extension Using a Bisoxazoline Coupling Agent: Monte Carlo Simulation. Macromolecular Theory and Simulations, 2005, 14, 586-595.	1.4	9
56	Investigation of crystallization of PVCH-PE-PVCH triblock copolymer in supercritical carbon dioxide. Journal of Applied Polymer Science, 2006, 102, 2584-2589.	2.6	9
57	Revealing formation process of microcapsules during in situ polymerization via confocal laser scanning fluorescence microscopy. Colloid and Polymer Science, 2011, 289, 1719-1728.	2.1	9
58	High-concentration aliphatic and aromatic dispersions of single- and few-layer graphene noncovalently modified by block copolymer crystallization. Carbon, 2012, 50, 4760-4764.	10.3	9
59	Role of compatibilizer in multicomponent polymer mixtures under shear flow. Soft Matter, 2013, 9, 255-260.	2.7	8
60	Structural reorganization and crack-healing properties of hydrogels based on dynamic diselenide linkages. Science and Technology of Advanced Materials, 2020, 21, 450-460.	6.1	8
61	The Morphology and Dynamics of Substrate Effects on Spinodal Decomposition in Binary Mixtures with Short-Range Potential. Macromolecular Theory and Simulations, 2006, 15, 226-237.	1.4	7
62	Interface-Induced Coarsening Process in Polymer Blends. Journal of Colloid and Interface Science, 2001, 234, 24-27.	9.4	6
63	Stretchable alkaline quasi-solid-state electrolytes created by super-tough, fatigue-resistant and alkali-resistant multi-bond network hydrogels. Chinese Chemical Letters, 2023, 34, 107470.	9.0	6
64	High-performance multi-functional graphene/hexagonal boron nitride/poly(ethylene oxide) nanocomposites through enhanced interfacial interaction by coordination. RSC Advances, 2018, 8, 36761-36768.	3.6	5
65	Monte Carlo simulation of diffusion effects on chain-extension reactions. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2902-2911.	2.1	4
66	Li-S Batteries: Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li-S Batteries (Small 41/2018). Small, 2018, 14, 1870190.	10.0	3
67	Thermoreversible Gelation Mechanism of Polystyrene/CS2 Solutions. Polymer Journal, 1998, 30, 435-438.	2.7	2
68	Preparation of polypropylene/acrylonitrile-styrene copolymer alloys by one-step reactive blending. Journal of Applied Polymer Science, 2001, 82, 1284-1290.	2.6	1