Marta Sanchez-Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8781231/publications.pdf

Version: 2024-02-01

21

all docs

21 875 12 papers citations h-index

21 21 1201 docs citations times ranked citing authors

839053

18

g-index

#	Article	IF	CITATIONS
1	Time will tell. Reply to "Comments to pharmacological and behavioral divergence of ketamine enantiomers by Jordi Bonaventura et al.―by Chen et al Molecular Psychiatry, 2022, 27, 1863-1865.	4.1	3
2	G protein oupled receptor kinases regulate & [beta]â€arrestin interactions with the D2 dopamine receptor in an isoformâ€specific manner and in the absence of direct receptor phosphorylation. FASEB Journal, 2022, 36, .	0.2	0
3	Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Translational Psychiatry, 2021, 11, 59.	2.4	50
4	Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Molecular Psychiatry, 2021, 26, 6704-6722.	4.1	139
5	Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D ₂ Dopamine Receptor. Molecular Pharmacology, 2021, 100, 372-387.	1.0	14
6	Identification and drug-induced reversion of molecular signatures of Alzheimer's disease onset and progression in AppNL-G-F, AppNL-F, and 3xTg-AD mouse models. Genome Medicine, 2021, 13, 168.	3.6	7
7	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	1.7	51
8	A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Science Signaling, 2020, 13 , .	1.6	31
9	High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nature Communications, 2019, 10, 4627.	5. 8	128
10	Biased G Protein-Independent Signaling of Dopamine D1-D3 Receptor Heteromers in the Nucleus Accumbens. Molecular Neurobiology, 2019, 56, 6756-6769.	1.9	33
11	Revisiting the Functional Role of Dopamine D4 Receptor Gene Polymorphisms: Heteromerization-Dependent Gain of Function of the D4.7 Receptor Variant. Molecular Neurobiology, 2019, 56, 4778-4785.	1.9	13
12	$\hat{l}\pm 2A$ - and $\hat{l}\pm 2C$ -Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands. Molecular Neurobiology, 2018, 55, 8438-8454.	1.9	26
13	Identification of Positive Allosteric Modulators of the D ₁ Dopamine Receptor That Act at Diverse Binding Sites. Molecular Pharmacology, 2018, 94, 1197-1209.	1.0	35
14	Identification of residues in the fifth transmembrane-spanning domain of the D2-like dopamine receptors that engender signaling bias. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-119.	0.0	0
15	Bioluminescence Resonance Energy Transfer Assay to Characterize Giâ€Like G Protein Subtypeâ€Dependent Functional Selectivity. Current Protocols in Neuroscience, 2017, 81, 5.33.1-5.33.13.	2.6	2
16	A Novel Class of Dopamine D ₄ Receptor Ligands Bearing an Imidazoline Nucleus. ChemMedChem, 2016, 11, 1819-1828.	1.6	7
17	Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D ₂ -Like Receptor Agonist. Molecular Pharmacology, 2016, 89, 457-466.	1.0	62
18	Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D ₁ -D ₃ Receptor Heterotetramer. Molecular Pharmacology, 2014, 86, 417-429.	1.0	114

#	Article	IF	CITATIONS
19	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	2.0	83
20	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	2.0	77
21	The show must go on. Reply to "Distinct functions of S-ketamine and R-ketamine in mediating biobehavioral processes of drug dependency: comments on Bonaventura et al―by Insop Shim. Molecular Psychiatry, 0, , .	4.1	0