Tian Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8781227/publications.pdf

Version: 2024-02-01

117453 161609 3,764 127 34 54 h-index citations g-index papers 128 128 128 4600 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nonreciprocal Transport in a Bilayer of MnBi ₂ Te ₄ and Pt. Nano Letters, 2022, 22, 1366-1373.	4.5	7
2	Visualizing Hot arrier Expansion and Cascaded Transport in WS ₂ by Ultrafast Transient Absorption Microscopy. Advanced Science, 2022, 9, e2105746.	5.6	9
3	Multidimensional engineered metasurface for ultrafast terahertz switching at frequency-agile channels. Nanophotonics, 2022, 11, 1367-1378.	2.9	13
4	Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light: Science and Applications, 2022, 11, 94.	7.7	24
5	Light-Driven Spintronic Heterostructures for Coded Terahertz Emission. ACS Nano, 2022, 16, 8294-8300.	7.3	13
6	Spatiotemporal Lineshape Tailoring in BICâ€Mediated Reconfigurable Metamaterials. Advanced Functional Materials, 2022, 32, .	7.8	20
7	Structural Evolution of Atomically Thin 1T'â€MoTe ₂ Alloyed in Chalcogen Atmosphere. Small Structures, 2022, 3, .	6.9	6
8	Polarizationâ€Dependent and Wavelengthâ€Tunable Optical Limiting and Transparency of Multilayer Seleniumâ€Doped Black Phosphorus. Advanced Optical Materials, 2021, 9, .	3.6	12
9	FPGA Implementation of an Improved OMP for Compressive Sensing Reconstruction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 259-272.	2.1	14
10	Enhanced Terahertz Radiation by Efficient Spin-to-Charge Conversion in Rashba-Mediated Dirac Surface States. Nano Letters, 2021, 21, 60-67.	4.5	31
11	Spatiotemporal Terahertz Metasurfaces for Ultrafast Allâ€Optical Switching with Electricâ€Triggered Bistability. Laser and Photonics Reviews, 2021, 15, 2000456.	4.4	24
12	Allâ€Inorganic Quantum Dot Lightâ€Emitting Diodes with Suppressed Luminance Quenching Enabled by Chloride Passivated Tungsten Phosphate Hole Transport Layers. Small, 2021, 17, e2100030.	5.2	33
13	Topological phase transition in Sb-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Mg</mml:mi><td>:maow><r< td=""><td>nm&mn>3</td></r<></td></mml:mrow></mml:msub></mml:math>	:maow> <r< td=""><td>nm&mn>3</td></r<>	nm&mn>3
14	Joint spectral-spatial hyperspectral classification based on transfer learning (SSTL) from red-green-blue (RGB) images. International Journal of Remote Sensing, 2021, 42, 4023-4041.	1.3	2
15	Distance-based hyperspectral open-set classification of deep neural networks. Remote Sensing Letters, 2021, 12, 636-644.	0.6	1
16	Bifunctional Spatiotemporal Metasurfaces for Incident Angleâ€Tunable and Ultrafast Optically Switchable Electromagnetically Induced Transparency. Small, 2021, 17, 2006489.	5.2	18
17	Embedded real-time infrared and visible image fusion for UAV surveillance. Journal of Real-Time Image Processing, 2021, 18, 2331-2345.	2.2	9
18	Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface. Photonics Research, 2021, 9, 1099.	3.4	38

#	Article	IF	CITATIONS
19	Achieving efficient inverse design of low-dimensional heterostructures based on a vigorous scalable multi-task learning network. Optics Express, 2021, 29, 19727.	1.7	7
20	Tunable nonlinear optical responses of few-layer graphene through lithium intercalation. Nanophotonics, 2021, 10, 2661-2669.	2.9	6
21	Conformal Self-Assembly of Nanospheres for Light-Enhanced Airtightness Monitoring and Room-Temperature Gas Sensing. Nanomaterials, 2021, 11, 1829.	1.9	0
22	Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photonics Research, 2021, 9, 1493.	3.4	35
23	Terahertz Generation via Picosecond Spin-to-Charge Conversion in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>lr</mml:mi><mml:mi>Mn</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>	1 ^{1.5} 3 <td>:12 :mn></td>	: 12 :mn>
24	Giant Photoluminescence Enhancement and Carrier Dynamics in MoS2 Bilayers with Anomalous Interlayer Coupling. Nanomaterials, 2021, 11, 1994.	1.9	3
25	A 200 MHz Compact Environmentally-Stable Mode-Locked Figure-9 Fiber Laser. IEEE Photonics Journal, 2021, 13, 1-5.	1.0	12
26	Anisotropic Temporal Metasurfaces for Tunable Ultrafast Photoactive Switching Dynamics. Laser and Photonics Reviews, 2021, 15, 2100244.	4.4	11
27	A free-running dual-comb spectrometer with intelligent temporal alignment algorithm. Optics and Laser Technology, 2021, 141, 107175.	2.2	6
28	Growth mechanism and atomic structure of group-IIA compound-promoted CVD-synthesized monolayer transition metal dichalcogenides. Nanoscale, 2021, 13, 13030-13041.	2.8	7
29	Bi ₂ Se ₃ -Functionalized Metasurfaces for Ultrafast All-Optical Switching and Efficient Modulation of Terahertz Waves. ACS Photonics, 2021, 8, 771-780.	3.2	38
30	Expedited circular dichroism prediction and engineering in two-dimensional diffractive chiral metamaterials leveraging a powerful model-agnostic data enhancement algorithm. Nanophotonics, 2021, 10, 1155-1168.	2.9	12
31	Neuromorphology in-sensor computing architecture based on an optical Fourier transform. Optics Letters, 2021, 46, 5501.	1.7	3
32	Ultraefficient Terahertz Emission Mediated by Shift-Current Photovoltaic Effect in Layered Gallium Telluride. ACS Nano, 2021, 15, 17565-17572.	7.3	12
33	Reconfigurable high-order radio frequency filters based on a wide-bandwidth optical frequency comb. , 2021, , .		O
34	Graphene-Based Tunable Coloration Film through Intercalation. ACS Photonics, 2021, 8, 3599-3606.	3.2	3
35	Controlling Photoluminescence Enhancement and Energy Transfer in WS ₂ :hBN:WS ₂ Vertical Stacks by Precise Interlayer Distances. Small, 2020, 16, e1905985.	5.2	26
36	Layer-dependent dielectric permittivity of topological insulator Bi2Se3 thin films. Applied Surface Science, 2020, 509, 144822.	3.1	29

#	Article	IF	CITATIONS
37	Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 2020, 68, 104280.	8.2	61
38	GPU Parallel Implementation for Real-Time Feature Extraction of Hyperspectral Images. Applied Sciences (Switzerland), 2020, 10, 6680.	1.3	1
39	Hybrid/Integrated Silicon Photonics Based on 2D Materials in Optical Communication Nanosystems. Laser and Photonics Reviews, 2020, 14, 2000239.	4.4	63
40	Distinctive Interfacial Charge Behavior and Versatile Photoresponse Performance in Isotropic/Anisotropic WS ₂ /ReS ₂ Heterojunctions. ACS Applied Materials & Interfaces, 2020, 12, 53475-53483.	4.0	42
41	Quantum Transport Signatures of a Close Candidate for a Type II Nodal-Line Semimetal. Journal of Physical Chemistry Letters, 2020, 11, 6475-6481.	2.1	13
42	Acoustic phonon recycling for photocarrier generation in graphene-WS2 heterostructures. Nature Communications, 2020, 11, 3876.	5.8	36
43	Hyperspectral Image Super-Resolution Based on Spatial Group Sparsity Regularization Unmixing. Applied Sciences (Switzerland), 2020, 10, 5583.	1.3	3
44	Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light: Science and Applications, 2020, 9, 148.	7.7	54
45	Inversion Symmetry Breaking in Lithium Intercalated Graphitic Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28561-28567.	4.0	9
46	Hyperspectral open set classification with unknown classes rejection towards deep networks. International Journal of Remote Sensing, 2020, 41, 6355-6383.	1.3	11
47	Pumpâ€Color Selective Control of Ultrafast Allâ€Optical Switching Dynamics in Metaphotonic Devices. Advanced Science, 2020, 7, 2000799.	5.6	34
48	All-optical modulation with 2D layered materials: status and prospects. Nanophotonics, 2020, 9, 2107-2124.	2.9	51
49	Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect. Nanophotonics, 2020, 9, 2797-2807.	2.9	23
50	Thickness-Independent Energy Dissipation in Graphene Electronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17706-17712.	4.0	13
51	Ultrafast Response of a Hybrid Device Based on Strongly Coupled Monolayer WS ₂ and Photonic Crystals: The Effect of Photoinduced Coulombic Screening. Laser and Photonics Reviews, 2020, 14, 1900419.	4.4	18
52	Ultrafast Frequency Shift of Electromagnetically Induced Transparency in Terahertz Metaphotonic Devices. Laser and Photonics Reviews, 2020, 14, 1900338.	4.4	31
53	Deep-Learning-Based Active Hyperspectral Imaging Classification Method Illuminated by the Supercontinuum Laser. Applied Sciences (Switzerland), 2020, 10, 3088.	1.3	7
54	Polarization-tunable nonlinear absorption patterns from saturated absorption to reverse saturated absorption in anisotropic GeS flake and an application of all-optical switching. Science China Materials, 2020, 63, 1489-1502.	3.5	15

#	Article	IF	CITATIONS
55	BER evaluation in a multi-channel graphene-silicon photonic crystal hybrid interconnect: a study of fast- and slow-light effects. Optics Express, 2020, 28, 17286.	1.7	2
56	Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 1.5â€Âμm. Optics Express, 2020, 28, 34761.	1.7	27
57	Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network. Optics Letters, 2020, 45, 1403.	1.7	28
58	Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Research, 2020, 8, 78.	3 . 4	242
59	All-optical dynamic tuning of local excitonic emission of monolayer MoS2 by integration with Ge2Sb2Te5. Nanophotonics, 2020, 9, 2351-2359.	2.9	4
60	Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics, 2020, 9, 2945-2956.	2.9	36
61	Enhanced directional emission of monolayer tungsten disulfide (WS ₂) with robust linear polarization via one-dimensional photonic crystal (PhC) slab. Nanophotonics, 2020, 9, 4337-4345.	2.9	10
62	Valley depolarization in downconversion and upconversion emission of monolayer WS ₂ at room temperature. Nanophotonics, 2020, 9, 4809-4818.	2.9	5
63	Polarization-dependent nonlinear optical response in GeSe ₂ . Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184212.	0.2	2
64	Helicity-dependent THz emission induced by ultrafast spin photocurrent in nodal-line semimetal candidate Mg3Bi2. Opto-Electronic Advances, 2020, 3, 20002301-20002315.	6.4	16
65	In-plane anisotropy in twisted bilayer graphene probed by Raman spectroscopy. Nanotechnology, 2019, 30, 435702.	1.3	11
66	Anisotropic Nonlinear Optical Properties of a SnSe Flake and a Novel Perspective for the Application of Allâ€Optical Switching. Advanced Optical Materials, 2019, 7, 1900631.	3.6	74
67	A polarized nonlinear optical response in a topological insulator Bi∢sub>2∢/sub>Se∢sub>3∢/sub>–Au nanoantenna hybrid-structure for all-optical switching. Nanoscale, 2019, 11, 14598-14606.	2.8	26
68	Bolometric Effect in Bi ₂ O ₂ Se Photodetectors. Small, 2019, 15, e1904482.	5. 2	68
69	Ultrafast Terahertz Frequency and Phase Tuning by Allâ€Optical Molecularization of Metasurfaces. Advanced Optical Materials, 2019, 7, 1901050.	3.6	38
70	Self-starting all-fiber PM Er:laser mode locked by a biased nonlinear amplifying loop mirror*. Chinese Physics B, 2019, 28, 124203.	0.7	12
71	Tunable Infrared Emissivity in Multilayer Graphene by Ionic Liquid Intercalation. Nanomaterials, 2019, 9, 1096.	1.9	36
72	Tunable photoluminescence of bilayer MoS2 via interlayer twist. Optical Materials, 2019, 94, 213-216.	1.7	17

#	Article	IF	Citations
73	Dimensional Crossover and Topological Nature of the Thin Films of a Three-Dimensional Topological Insulator by Band Gap Engineering. Nano Letters, 2019, 19, 4627-4633.	4.5	16
74	Ultrafast exciton transfer in perovskite CsPbBr ₃ quantum dots and topological insulator Bi ₂ Se ₃ film heterostructure. Nanotechnology, 2019, 30, 325702.	1.3	13
75	Performance of Bi-Directional Mode-Locked Fiber Laser at 2 Î $\frac{1}{4}$ m. , 2019, , .		O
76	Near-Infrared Photoelectric Properties of Multilayer Bi2O2Se Nanofilms. Nanoscale Research Letters, 2019, 14, 371.	3.1	31
77	Experimental Evidence of Topological Surface States in Mg ₃ Bi ₂ Films Grown by Molecular Beam Epitaxy*. Chinese Physics Letters, 2019, 36, 117303.	1.3	15
78	Terahertz Metamaterials: Ultrafast Terahertz Frequency and Phase Tuning by Allâ€Optical Molecularization of Metasurfaces (Advanced Optical Materials 22/2019). Advanced Optical Materials, 2019, 7, 1970084.	3.6	5
79	All-Fiber Bidirectional Mode-Locked Ultrafast Fiber Laser at $2\hat{A} < i > \hat{I} / 4 < / i > m$. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	10
80	Nonlinear Nanophotonics With 2D Transition Metal Dichalcogenides., 2019,, 305-318.		5
81	Ultrafast nonlinear absorption enhancement of monolayer MoS ₂ with plasmonic Au nanoantennas. Optics Letters, 2019, 44, 3198.	1.7	13
82	Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photonics Research, 2019, 7, 994.	3.4	37
83	Electron–phonon coupling in topological insulator Bi2Se3 thin films with different substrates. Chinese Optics Letters, 2019, 17, 020005.	1.3	22
84	Title is missing!. Chinese Optics Letters, 2019, 17, 071403.	1.3	10
85	Reconfigurable linear-phase response spectral shaping filer. , 2019, , .		O
86	Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS ₂ :hBN:MoS ₂ Heterostructures for Exciton Energy Transfer. Small, 2018, 14, e1703727.	5.2	54
87	Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers. Nanotechnology, 2018, 29, 105301.	1.3	17
88	Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS _{/CsPbBr₃ quantum dot heterostructure. Nanoscale, 2018, 10, 1650-1659.}	2.8	61
89	Enhancing exciton binding energy and photoluminescence of formamidinium lead bromide by reducing its dimensions to 2D nanoplates for producing efficient light emitting diodes. Nanoscale, 2018, 10, 20611-20617.	2.8	36
90	Saturated absorption of different layered Bi ₂ Se ₃ films in the resonance zone. Photonics Research, 2018, 6, C8.	3.4	35

#	Article	IF	CITATIONS
91	Ultrafast Carrier Transfer Promoted by Interlayer Coulomb Coupling in 2D/3D Perovskite Heterostructures. Laser and Photonics Reviews, 2018, 12, 1800128.	4.4	59
92	Accelerated image factorization based on improved NMF algorithm. Journal of Real-Time Image Processing, 2018, 15, 93-105.	2.2	5
93	Realizing an Epitaxial Decorated Stanene with an Insulating Bandgap. Advanced Functional Materials, 2018, 28, 1802723.	7.8	63
94	Photo-induced excitonic structure renormalization and broadband absorption in monolayer tungsten disulphide. Optics Express, 2018, 26, 859.	1.7	32
95	Visualized charge transfer processes in monolayer composition-graded WS _{2x} Se _{2(1â^'x)} lateral heterojunctions via ultrafast microscopy mapping. Optics Express, 2018, 26, 15867.	1.7	15
96	Ultrafast saturable absorption of MoS_2 nanosheets under different pulse-width excitation conditions. Optics Letters, 2018, 43, 243.	1.7	54
97	Controlled Layer-by-Layer Oxidation of MoTe ₂ via O ₃ Exposure. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30045-30050.	4.0	49
98	Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr_3 nanocrystal. Optics Letters, 2018, 43, 122.	1.7	41
99	Photoluminescence enhancement and ultrafast relaxation dynamics in a low-dimensional heterostructure: effect of plasmon–exciton coupling. Optics Letters, 2018, 43, 6093.	1.7	13
100	Electro-photo modulation of the fermi level in WSe 2 /graphene van der Waals heterojunction. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 279-283.	1.3	3
101	Photodetectors: Broadband Highâ€Responsivity Photodetectors Based on Largeâ€Scale Topological Crystalline Insulator SnTe Ultrathin Film Grown by Molecular Beam Epitaxy (Advanced Optical) Tj ETQq1 1 0.7843	31 4.6 gBT/	Ovverlock 10
102	Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb ₂ Te ₃ /STO heterostructures. Nanoscale, 2017, 9, 9325-9332.	2.8	34
103	Broadband Highâ€Responsivity Photodetectors Based on Largeâ€Scale Topological Crystalline Insulator SnTe Ultrathin Film Grown by Molecular Beam Epitaxy. Advanced Optical Materials, 2017, 5, 1600727.	3.6	48
104	All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber. Laser Physics, 2017, 27, 015102.	0.6	22
105	Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO ₂ Nanosheets for Enhanced Solar-Light Photocatalytic Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36907-36916.	4.0	59
106	Optically controlled terahertz modulator by liquid-exfoliated multilayer WS_2 nanosheets. Optics Express, 2017, 25, 16364.	1.7	38
107	Thickness-dependent nonlinear optical properties of CsPbBr_3 perovskite nanosheets. Optics Letters, 2017, 42, 3371.	1.7	59
108	Giant photoluminescence enhancement in monolayer WS_2 by energy transfer from CsPbBr_3 quantum dots. Optical Materials Express, 2017, 7, 1327.	1.6	30

#	Article	IF	CITATIONS
109	Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots. Optics Express, 2017, 25, 7507.	1.7	37
110	Thickness-dependent carrier and phonon dynamics of topological insulator Bi_2Te_3 thin films. Optics Express, 2017, 25, 14635.	1.7	24
111	Dielectric properties of a CsPbBr_3 quantum dot solution in the terahertz region. Applied Optics, 2017, 56, 2878.	2.1	9
112	Modification of degenerative photoluminescence in aged monolayer WS_2 by PC_61BM surface processing. Applied Optics, 2017, 56, 890.	2.1	5
113	Giant nonlinear absorption and excited carrier dynamics of black phosphorus few-layer nanosheets in broadband spectra. Applied Optics, 2016, 55, 10307.	2.1	25
114	Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets. Optical Materials Express, 2016, 6, 603.	1.6	78
115	Fabrication of a reversible SnS ₂ /RGO nanocomposite for high performance lithium storage. RSC Advances, 2016, 6, 32414-32421.	1.7	24
116	Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications. Optics Express, 2016, 24, 20010.	1.7	27
117	Large range modification of exciton species in monolayer WS_2. Applied Optics, 2016, 55, 6251.	2.1	42
118	Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr_3 quantum dots. Optics Letters, 2016, 41, 3821.	1.7	246
119	Observation of Ultrafast Exciton–Exciton Annihilation in CsPbBr ₃ Quantum Dots. Advanced Optical Materials, 2016, 4, 1993-1997.	3.6	64
120	Raman and Photoluminescence Spectroscopy of Laser Irradiated Sites of Fused Silica: Comparison between Bulk and Surface Damage. , 2016 , , .		2
121	Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber. Applied Optics, 2015, 54, 10290.	2.1	96
122	Soliton mode-locked fiber laser based on topological insulator Bi_2Te_3 nanosheets at 2  μm. Photonic Research, 2015, 3, 72.		117
123	Z-scan measurement of the nonlinear refractive index of monolayer WS_2. Optics Express, 2015, 23, 15616.	1.7	118
124	Z-scan measurement of nonlinear optical properties of BiOCl nanosheets. Applied Optics, 2015, 54, 6592.	2.1	10
125	Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Optics Letters, 2015, 40, 3480.	1.7	110
126	Molecular Beam Epitaxyâ€Grown SnSe in the Rockâ€Salt Structure: An Artificial Topological Crystalline Insulator Material. Advanced Materials, 2015, 27, 4150-4154.	11.1	83

ARTICLE IF CITATIONS

127 The output of photovoltaic detector irradiated by spectral unrelated laser., 2011,,... o