Sonia Perez-Yañez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8780906/publications.pdf

Version: 2024-02-01

62 papers

1,502 citations

236833 25 h-index 330025 37 g-index

65 all docs

65 docs citations

65 times ranked

1865 citing authors

#	Article	IF	CITATIONS
1	Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO ₂ reduction. RSC Advances, 2018, 8, 21092-21099.	1.7	108
2	Metal–carboxylato–nucleobase systems: From supramolecular assemblies to 3D porous materials. Coordination Chemistry Reviews, 2013, 257, 2716-2736.	9.5	81
3	Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity. Chemistry of Materials, 2016, 28, 2519-2528.	3.2	68
4	Lanthanide(III)/Pyrimidine-4,6-dicarboxylate/Oxalate Extended Frameworks: A Detailed Study Based on the Lanthanide Contraction and Temperature Effects. Inorganic Chemistry, 2011, 50, 8437-8451.	1.9	60
5	Paddle-Wheel Shaped Copper(II)-Adenine Discrete Entities As Supramolecular Building Blocks To Afford Porous Supramolecular Metal–Organic Frameworks (SMOFs). Crystal Growth and Design, 2014, 14, 4019-4029.	1.4	58
6	Open-Framework Copper Adeninate Compounds with Three-Dimensional Microchannels Tailored by Aliphatic Monocarboxylic Acids. Inorganic Chemistry, 2011, 50, 5330-5332.	1.9	48
7	Directing the Formation of Adenine Coordination Polymers from Tunable Copper(II)/Dicarboxylato/Adenine Paddle-Wheel Building Units. Crystal Growth and Design, 2012, 12, 3324-3334.	1.4	46
8	Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials. Inorganic Chemistry, 2016, 55, 11230-11248.	1.9	46
9	A straightforward route to obtain zirconium based metal-organic gels. Microporous and Mesoporous Materials, 2019, 284, 128-132.	2.2	46
10	Analysis of the Interaction between Adenine Nucleobase and Metalâ€Malonato Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 3889-3899.	1.0	45
11	Synthetic Control to Achieve Lanthanide(III)/Pyrimidine-4,6-dicarboxylate Compounds by Preventing Oxalate Formation: Structural, Magnetic, and Luminescent Properties. Inorganic Chemistry, 2012, 51, 7875-7888.	1.9	44
12	Porous supramolecular compound based on paddle-wheel shaped copper(ii)–adenine dinuclear entities. CrystEngComm, 2011, 13, 3301.	1.3	43
13	Porous materials based on metal–nucleobase systems sustained by coordination bonds and base pairing interactions. CrystEngComm, 2015, 17, 3051-3059.	1.3	43
14	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-3906.	1.4	42
15	Unravelling the Growth of Supramolecular Metal–Organic Frameworks Based on Metal-Nucleobase Entities. Crystal Growth and Design, 2015, 15, 975-983.	1.4	40
16	Chemically Resistant, Shapeable, and Conducting Metalâ€Organic Gels and Aerogels Built from Dithiooxamidato Ligand. Advanced Functional Materials, 2017, 27, 1605448.	7.8	40
17	Supramolecular Architectures and Magnetic Properties of Selfâ€Assembled Windmillâ€Like Dinuclear Copper(II) Complexes with Purine Ligands. European Journal of Inorganic Chemistry, 2009, 2009, 2344-2353.	1.0	34
18	Supramolecular architectures of metal–oxalato complexes containing purine nucleobases. Inorganica Chimica Acta, 2011, 365, 211-219.	1,2	34

#	Article	IF	CITATIONS
19	Structure-Directing Effect of Organic Cations in the Assembly of Anionic In(III)/Diazinedicarboxylate Architectures. Crystal Growth and Design, 2012, 12, 1501-1512.	1.4	32
20	Gas Adsorption Properties and Selectivity in Cull/Adeninato/Carboxylato Metal-Biomolecule Frameworks. European Journal of Inorganic Chemistry, 2012, 2012, 5921-5933.	1.0	31
21	Exploiting Synthetic Conditions to Promote Structural Diversity within the Scandium(III)/Pyrimidine-4,6-dicarboxylate System. Crystal Growth and Design, 2015, 15, 2352-2363.	1.4	31
22	Enhancing luminescence properties of lanthanide(<scp>iii</scp>)/pyrimidine-4,6-dicarboxylato system by solvent-free approach. Dalton Transactions, 2015, 44, 6972-6986.	1.6	31
23	Influence of the Synthetic Conditions on the Structural Diversity of Extended Manganeseâ^'Oxalatoâ^'1,2-bis(4-pyridyl)ethylene Systems. Inorganic Chemistry, 2010, 49, 11346-11361.	1.9	29
24	From isolated to 2D coordination polymers based on 6-aminonicotinate and 3d-metal ions: towards field-induced single-ion-magnets. CrystEngComm, 2017, 19, 2229-2242.	1.3	28
25	Structural Diversity in a Copper(II)/Isophthalato/9-Methyladenine System. From One- to Three-Dimensional Metal-Biomolecule Frameworks. Crystal Growth and Design, 2013, 13, 3057-3067.	1.4	27
26	[Zr ₆ O ₄ (OH) ₄ (benzene-1,4-dicarboxylato) ₆] _n : a hexagonal polymorph of UiO-66. Chemical Communications, 2019, 55, 5954-5957.	2.2	24
27	Porous M ^I Pyrimidineâ€4,6â€Dicarboxylato Neutral Frameworks: Synthetic Influence on the Adsorption Capacity and Evaluation of CO ₂ â€Adsorbent Interactions. Chemistry - A European Journal, 2014, 20, 1554-1568.	1.7	22
28	Improving the performance of a poorly adsorbing porous material: template mediated addition of microporosity to a crystalline submicroporous MOF. Chemical Communications, 2012, 48, 907-909.	2.2	21
29	Alkaline-earth and aminonicotinate based coordination polymers with combined fluorescence/long-lasting phosphorescence and metal ion sensing response. Journal of Materials Chemistry C, 2019, 7, 6997-7012.	2.7	21
30	Photoluminescence Modulation in LanÂthanide(III)/Pyrazineâ€2,5â€dicarboxylato/Nitrato Frameworks. European Journal of Inorganic Chemistry, 2015, 2015, 4318-4328.	1.0	18
31	3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels. Inorganic Chemistry, 2016, 55, 7755-7763.	1.9	17
32	Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. IScience, 2021, 24, 102654.	1.9	17
33	Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coordination Chemistry Reviews, 2017, 352, 83-107.	9.5	16
34	Copper(II) invigorated EHU-30 for continuous electroreduction of CO2 into value-added chemicals. Scientific Reports, 2022, 12, .	1.6	16
35	Low-Nuclearity MnII Complexes Based on Pyrimidine-4,6-dicarboxylato Bridging Ligand: Crystal Structure, Ion Exchange and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 68-77.	1.0	15
36	Structural and magnetic characterization of one-dimensional oxalato-bridged metal(II) complexes with 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole ligand: A supramolecular open-framework. Inorganica Chimica Acta, 2009, 362, 4212-4218.	1.2	14

#	Article	IF	Citations
37	Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material. Polymers, 2016, 8, 16.	2.0	14
38	Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate. Scientific Reports, 2020, 10, 8843.	1.6	14
39	Towards multicomponent MOFs via solvent-free synthesis under conventional oven and microwave assisted heating. Inorganic Chemistry Frontiers, 2015, 2, 425-433.	3.0	13
40	Porous Supramolecular Architectures Based on π-Stacking Interactions between Discrete Metal-Adenine Entities and the Non-DNA Theobromine/Caffeine Nucleobases. Crystal Growth and Design, 2018, 18, 3465-3476.	1.4	13
41	Photoluminescence Tuning and Water Detection of Yttrium Diazinedicarboxylate Materials through Lanthanide Doping. European Journal of Inorganic Chemistry, 2015, 2015, 2650-2663.	1.0	12
42	Modulating the MII/Pyrimidine-4,6-dicarboxylato System by Metal, Solvent and Temperature Variation. European Journal of Inorganic Chemistry, 2014, 2014, 3221-3234.	1.0	10
43	Zinc/itaconate coordination polymers as first examples with long-lasting phosphorescence based on acyclic ligands. Journal of Materials Chemistry C, 2018, 6, 10870-10880.	2.7	10
44	Ferromagnetic supramolecular metal-organic frameworks for active capture and magnetic sensing of emerging drug pollutants. Cell Reports Physical Science, 2021, 2, 100421.	2.8	9
45	Adenine nucleobase directed supramolecular architectures based on ferrimagnetic heptanuclear copper(II) entities and benzenecarboxylate anions. Journal of Inorganic Biochemistry, 2020, 202, 110865.	1.5	8
46	Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorganic Chemistry Frontiers, 2021, 8, 4767-4779.	3.0	8
47	Merging the chemistry of metal–organic and polyoxometalate clusters to form enhanced photocatalytic materials. Inorganic Chemistry Frontiers, 2022, 9, 935-940.	3.0	8
48	Supramolecular architectures based on p-cymene/ruthenium complexes functionalized with nucleobases. CrystEngComm, 2017, 19, 6039-6048.	1.3	6
49	Providing evidence for the requirements to achieve supramolecular materials based on metal–nucleobase entities. CrystEngComm, 2018, 20, 2528-2539.	1.3	6
50	Supramolecular Architectures Based on Metal-Cytosine Systems. European Journal of Inorganic Chemistry, 2017, 2017, 1333-1340.	1.0	5
51	Theophylline alkaloid as glue of paddle-wheel copper(II)-adenine entities to afford a rhomboid chain. Inorganica Chimica Acta, 2019, 484, 437-442.	1.2	5
52	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
53	Condensed heterometallic bidimensional mixed valence Cul/Cull/Nill cyanidometallate. Dalton Transactions, 2009, , 9722.	1.6	4
54	Supramolecular extended systems based on discrete paddle-wheel shaped metal–adeninate entities. Inorganica Chimica Acta, 2016, 452, 222-228.	1.2	4

#	Article	IF	CITATIONS
55	The Chemistry of Zirconium/Carboxylate Clustering Process: Acidic Conditions to Promote Carboxylate-Unsaturated Octahedral Hexamers and Pentanuclear Species. Inorganic Chemistry, 2022, 61, 4842-4851.	1.9	4
56	Metal–Thiobenzoato Complexes: Synthesis, Structure, and Processing as Carbonâ€6upported Nanoparticles. European Journal of Inorganic Chemistry, 2018, 2018, 1371-1382.	1.0	3
57	Metal removal from the secondary building unit of bio-MOF-1 by adenine N6-alkylation while retaining the overall 3D porous topology. CrystEngComm, 2020, 22, 4201-4205.	1.3	2
58	Slot-Die Process of a Sol–Gel Photocatalytic Porous Coating for Large-Area Fabrication of Functional Architectural Glass. Catalysts, 2021, 11, 711.	1.6	2
59	The crystal structure of a new polymorph of hexaaquanickel(II) bis(6-oxo-1,6-dihydropyridine-3-carboxylate). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m238-m239.	0.2	1
60	Supramolecular architectures of metal-oxalato coordination polymers bearing N-tethered adenine nucleobases. Polyhedron, 2019, 171, 53-64.	1.0	0
61	Base nitrogenatuak konposatu metal-organiko porotsuak eraikitzeko baliabide: zenbait adibide. Ekaia (journal), 2017, , 113-124.	0.0	0
62	Nanoelikagaiak: tamainak axola duenean. Ekaia (journal), 2019, , 143-163.	0.0	О