Kirk S Schanze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8780682/publications.pdf

Version: 2024-02-01

516 papers 20,566 citations

9786 73 h-index 121 g-index

541 all docs

541 docs citations

541 times ranked

17506 citing authors

#	Article	IF	CITATIONS
1	Charge Transfer on the Nanoscale:  Current Status. Journal of Physical Chemistry B, 2003, 107, 6668-6697.	2.6	946
2	Conjugated Polyelectrolytes: Synthesis, Photophysics, and Applications. Angewandte Chemie - International Edition, 2009, 48, 4300-4316.	13.8	670
3	One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8, 14051.	12.8	623
4	Photophysics of Diimine Platinum(II) Bis-Acetylide Complexes. Inorganic Chemistry, 2001, 40, 4053-4062.	4.0	330
5	Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7505-7510.	7.1	319
	Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	i0 552 Td (et
6	structural characterization of PPE-SO3ââ,¬â€œ and PE-SO3ââ,¬â€œ. See http://www.rsc.org/suppdata/cc/b1/b109630c/. Chemical Communications, 2002, , 446-447.	4.1	273
7	Amplified Quenching of a Conjugated Polyelectrolyte by Cyanine Dyes. Journal of the American Chemical Society, 2004, 126, 13685-13694.	13.7	262
8	Studies of intramolecular electron and energy transfer using the fac-(diimine)Rel(CO)3 chromophore. Coordination Chemistry Reviews, 1993, 122, 63-89.	18.8	228
9	Extended Conjugation Platinum(II) Porphyrins for use in Near-Infrared Emitting Organic Light Emitting Diodes. Chemistry of Materials, 2011, 23, 5305-5312.	6.7	226
10	Unusual Photophysics of a Rhenium(I) Dipyridophenazine Complex in Homogeneous Solution and Bound to DNA. Journal of the American Chemical Society, 1995, 117, 7119-7128.	13.7	204
11	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.	13.7	201
12	Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports, 2013, 3, 2997.	3.3	194
13	Conjugated Polyelectrolyte-Based Real-Time Fluorescence Assay for Alkaline Phosphatase with Pyrophosphate as Substrate. Analytical Chemistry, 2008, 80, 8605-8612.	6.5	189
14	Donor–Acceptor–Donor-based π-Conjugated Oligomers for Nonlinear Optics and Near-IR Emission. Chemistry of Materials, 2011, 23, 3805-3817.	6.7	189
15	Synthesis, Photophysics, and Optical Limiting of Platinum(II) 4â€~-Tolylterpyridyl Arylacetylide Complexes. Inorganic Chemistry, 2005, 44, 4055-4065.	4.0	184
16	Photophysics of Monodisperse Platinum-Acetylide Oligomers:Â Delocalization in the Singlet and Triplet Excited States. Journal of the American Chemical Society, 2002, 124, 12412-12413.	13.7	183
17	Platinum–acetylide polymer based solar cells: involvement of the triplet state for energy conversion. Chemical Communications, 2006, , 1887-1889.	4.1	182

Photovoltaic Cells Based on Sequentially Adsorbed Multilayers of Conjugated Poly(p-phenylene) Tj ETQq0 0 0 rgBT 10 verlock 10 Tf 50 62

#	Article	IF	CITATIONS
19	Conjugated polyelectrolytes as fluorescent sensors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 173-190.	11.6	171
20	Saccharide Detection Based on the Amplified Fluorescence Quenching of a Water-Soluble Poly(phenylene ethynylene) by a Boronic Acid Functionalized Benzyl Viologen Derivative. Langmuir, 2002, 18, 7785-7787.	3 . 5	168
21	A Water-Soluble Poly(phenylene ethynylene) with Pendant Phosphonate Groups. Synthesis, Photophysics, and Layer-by-Layer Self-Assembled Filmsâ€. Langmuir, 2003, 19, 6523-6533.	3.5	163
22	Platinum Acetylide Two-Photon Chromophores. Inorganic Chemistry, 2007, 46, 6483-6494.	4.0	161
23	Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. Langmuir, 2001, 17, 7452-7455.	3.5	159
24	Amplified Fluorescence Quenching in a Poly(p-phenylene)-Based Cationic Polyelectrolyte. Journal of the American Chemical Society, 2000, 122, 8561-8562.	13.7	158
25	Variable Band Gap Poly(arylene ethynylene) Conjugated Polyelectrolytes. Macromolecules, 2006, 39, 6355-6366.	4.8	158
26	Phosphorescent Platinum Acetylide Organogelators. Journal of the American Chemical Society, 2008, 130, 2535-2545.	13.7	155
27	Preparation of CdS Nanoparticles in Salt-Induced Block Copolymer Micelles. Langmuir, 2001, 17, 8428-8433.	3.5	152
28	Pt-Enhanced Mesoporous Ti ³⁺ /TiO ₂ with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Diterfaces, 2017, 9, 16959-16966.	8.0	147
29	Photophysical Properties of Near-Infrared Phosphorescent π-Extended Platinum Porphyrins. Chemistry of Materials, 2011, 23, 5296-5304.	6.7	143
30	Regiosymmetric Dibutyl-Substituted Poly(3,4-propylenedioxythiophene)s as Highly Electron-Rich Electroactive and Luminescent Polymers. Macromolecules, 2002, 35, 6517-6525.	4.8	140
31	Conjugated Polyelectrolytes: Synthesis and Applications. Synthesis, 2002, 2002, 1293.	2.3	137
32	Hyperbranched Conjugated Polyelectrolyte Bilayers for Solar-Cell Applications. Journal of the American Chemical Society, 2007, 129, 8958-8959.	13.7	135
33	Low-Band-Gap Platinum Acetylide Polymers as Active Materials for Organic Solar Cells. ACS Applied Materials & Description (1988) amp; Interfaces, 2009, 1, 150-161.	8.0	135
34	It Takes More Than an Imine: The Role of the Central Atom on the Electron-Accepting Ability of Benzotriazole and Benzothiadiazole Oligomers. Journal of the American Chemical Society, 2012, 134, 2599-2612.	13.7	135
35	Light-Induced Biocidal Action of Conjugated Polyelectrolytes Supported on Colloids. Langmuir, 2008, 24, 11053-11062.	3.5	132
36	A conjugated polyelectrolyte-based fluorescence sensor for pyrophosphate. Chemical Communications, 2007, , 2914.	4.1	130

#	Article	IF	CITATIONS
37	Efficient Near-Infrared Polymer and Organic Light-Emitting Diodes Based on Electrophosphorescence from (Tetraphenyltetranaphtho[2,3]porphyrin)platinum(II). ACS Applied Materials & Samp; Interfaces, 2009, 1, 274-278.	8.0	129
38	Preparation and Spectroscopic Properties of Multiluminophore Luminescent Oxygen and Temperature Sensor Films. Langmuir, 2005, 21, 9121-9129.	3.5	125
39	Water Soluble Photo- and Electroluminescent Alkoxy-Sulfonated Poly(p-phenylenes) Synthesized via Palladium Catalysis. Macromolecules, 1998, 31, 964-974.	4.8	124
40	Photophysics of π-Conjugated Polymers That Incorporate Metal to Ligand Charge Transfer Chromophores. Journal of the American Chemical Society, 1997, 119, 3423-3424.	13.7	119
41	Luminescence Quenching of a Phosphorescent Conjugated Polyelectrolyte. Journal of the American Chemical Society, 2004, 126, 14964-14971.	13.7	119
42	Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends. Applied Physics Letters, 2001, 79, 3770-3772.	3.3	116
43	The triplet state in Pt-acetylide oligomers, polymers and copolymers. Coordination Chemistry Reviews, 2005, 249, 1491-1500.	18.8	116
44	Direct Synthesis of an Oligonucleotide–Poly(phenylene ethynylene) Conjugate with a Precise One-to-One Molecular Ratio. Angewandte Chemie - International Edition, 2005, 44, 2572-2576.	13.8	114
45	Intramolecular electron transfer in the reductive chromophore-quencher complex [(bpy)Re(CO)3(py-PTZ)]+. Inorganic Chemistry, 1987, 26, 1116-1126.	4.0	111
46	Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. Journal of the American Chemical Society, 2020, 142, 1603-1613.	13.7	111
47	Enhancing the Efficiency of Solution-Processed Polymer:Colloidal Nanocrystal Hybrid Photovoltaic Cells Using Ethanedithiol Treatment. ACS Nano, 2013, 7, 4846-4854.	14.6	108
48	Photoinduced intramolecular electron transfer in peptide-bridged molecules. Journal of the American Chemical Society, 1988, 110, 1180-1186.	13.7	105
49	Conjugated Polyelectrolyte Capsules: Light-Activated Antimicrobial Micro "Roach Motels― ACS Applied Materials & Interfaces, 2009, 1, 48-52.	8.0	105
50	Low-Bandgap Donorâ^'Acceptor Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 3063-3069.	13.7	105
51	Facile Preparation and Photophysics of Near-Infrared Luminescent Lanthanide(III) Monoporphyrinate Complexes. Inorganic Chemistry, 2003, 42, 5023-5032.	4.0	104
52	Intramolecular energy transfer in the inverted region. Journal of the American Chemical Society, 1992, 114, 1897-1898.	13.7	102
53	Triplet Excited State in Platinumâ-'Acetylide Oligomers:Â Triplet Localization and Effects of Conformation. Journal of Physical Chemistry B, 2007, 111, 929-940.	2.6	101
54	Direct Observation of the Reduction of Aryl Halides by a Photoexcited Perylene Diimide Radical Anion. Journal of the American Chemical Society, 2020, 142, 2204-2207.	13.7	100

#	Article	IF	Citations
55	Donor-acceptor copolymers for red- and near-infrared-emitting polymer light-emitting diodes. Journal of Polymer Science Part A, 2005, 43, 1417-1431.	2.3	96
56	Direct Visualization of Bactericidal Action of Cationic Conjugated Polyelectrolytes and Oligomers. Langmuir, 2012, 28, 65-70.	3.5	93
57	Fluorescent ratiometric sensing of pyrophosphate via induced aggregation of a conjugated polyelectrolyte. Chemical Communications, 2010, 46, 6075.	4.1	89
58	Photophysics of Ï€-Conjugated Metalâ^'Organic Oligomers: Aryleneethynylenes that Contain the (bpy)Re(CO)3Cl Chromophore. Journal of the American Chemical Society, 2001, 123, 8329-8342.	13.7	88
59	Photophysics and Photochemistry of Stilbene-Containing Platinum Acetylides. Journal of Physical Chemistry B, 2004, 108, 4969-4978.	2.6	87
60	Amplified Fluorescence Quenching of a Conjugated Polyelectrolyte Mediated by Ca2+. Langmuir, 2006, 22, 5541-5543.	3.5	86
61	Understanding the Dark and Light-Enhanced Bactericidal Action of Cationic Conjugated Polyelectrolytes and Oligomers. Langmuir, 2013, 29, 781-792.	3.5	86
62	Phenylene Vinylene Platinum(II) Acetylides with Prodigious Two-Photon Absorption. Journal of the American Chemical Society, 2012, 134, 19346-19349.	13.7	85
63	Cation-controlled photophysics in a rhenium(I) fluoroionophore. Journal of the American Chemical Society, 1991, 113, 6108-6110.	13.7	83
64	Progress in Perovskite Photocatalysis. ACS Energy Letters, 2020, 5, 2602-2604.	17.4	83
65	Spectral Broadening in Nanocrystalline TiO2 Solar Cells Based on Poly(p-phenylene ethynylene) and Polythiophene Sensitizers. Chemistry of Materials, 2006, 18, 6109-6111.	6.7	82
66	"End-Only―Functionalized Oligo(phenylene ethynylene)s: Synthesis, Photophysical and Biocidal Activity. Journal of Physical Chemistry Letters, 2010, 1, 3207-3212.	4.6	82
67	Conjugated Polyelectrolytes with Imidazolium Solubilizing Groups. Properties and Application to Photodynamic Inactivation of Bacteria. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28027-28034.	8.0	82
68	Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation. Inorganic Chemistry, 1996, 35, 7102-7110.	4.0	81
69	Conjugated Polyelectrolyte Based Real-Time Fluorescence Assay for Phospholipase C. Analytical Chemistry, 2008, 80, 150-158.	6.5	80
70	Solvent effects on the thermal cis-trans isomerization and charge-transfer absorption of 4-(diethylamino)-4'-nitroazobenzene. Journal of Organic Chemistry, 1983, 48, 2808-2813.	3.2	78
71	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angewandte Chemie - International Edition, 2017, 56, 13455-13458.	13.8	78
72	Free energy and solvent dependence of intramolecular electron transfer in donor-substituted rhenium(I) complexes. Journal of the American Chemical Society, 1991, 113, 7470-7479.	13.7	77

#	Article	IF	CITATIONS
73	Selective Imaging and Inactivation of Bacteria over Mammalian Cells by Imidazolium-Substituted Polythiophene. Chemistry of Materials, 2017, 29, 6389-6395.	6.7	77
74	Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activated Biocidal Activity of Conjugated Polyelectrolytes. ACS Applied Materials & Light and Dark-Activity (1998) and Dark-Activity (1998	8.0	76
75	Bulk assembly of organic metal halide nanotubes. Chemical Science, 2017, 8, 8400-8404.	7.4	76
76	Near-Infrared Photo- and Electroluminescence of Alkoxy-Substituted Poly(p-phenylene) and Nonconjugated Polymer/Lanthanide Tetraphenylporphyrin Blends. Chemistry of Materials, 2004, 16, 2938-2947.	6.7	75
77	Photophysics and Electron Transfer in Poly(3-octylthiophene) Alternating with Ru(II)â^' and Os(II)â^'Bipyridine Complexes. Inorganic Chemistry, 2000, 39, 5496-5509.	4.0	73
78	Amplified Fluorescence Quenching and Electroluminescence of a Cationic Poly(p-phenylene-co-thiophene) Polyelectrolyte. Macromolecules, 2005, 38, 234-243.	4.8	73
79	Effect of Selenium Substitution on Intersystem Crossing in π-Conjugated Donor–Acceptor–Donor Chromophores: The LUMO Matters the Most. Journal of Physical Chemistry Letters, 2016, 7, 693-697.	4.6	73
80	Membrane Perturbation Activity of Cationic Phenylene Ethynylene Oligomers and Polymers: Selectivity against Model Bacterial and Mammalian Membranes. Langmuir, 2010, 26, 12509-12514.	3.5	72
81	Organoplatinum Chromophores for Application in High-Performance Nonlinear Absorption Materials. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3225-3238.	8.0	72
82	CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. Journal of Chemical Physics, 2004, 121, 10233-10240.	3.0	71
83	Insight into the Mechanism of Antimicrobial Conjugated Polyelectrolytes: Lipid Headgroup Charge and Membrane Fluidity Effects. Langmuir, 2010, 26, 5544-5550.	3.5	71
84	Negative Polaron and Triplet Exciton Diffusion in Organometallic "Molecular Wires― Journal of the American Chemical Society, 2011, 133, 11289-11298.	13.7	70
85	Near-infrared organic light emitting diodes. Synthetic Metals, 2003, 137, 1013-1014.	3.9	68
86	Light-Induced Antibacterial Activity of Symmetrical and Asymmetrical Oligophenylene Ethynylenes. Langmuir, 2011, 27, 4956-4962.	3.5	68
87	DNA oligomers and duplexes containing a covalently attached derivative of tris(2,2'-bipyridine)ruthenium(II): synthesis and characterization by thermodynamic and optical spectroscopic measurements. Journal of the American Chemical Society, 1989, 111, 7221-7226.	13.7	67
88	A fulleropyrrolidine end-capped platinum-acetylide triad: the mechanism of photoinduced charge transfer in organometallic photovoltaic cells. Physical Chemistry Chemical Physics, 2007, 9, 2724.	2.8	67
89	Cationic Phenylene Ethynylene Polymers and Oligomers Exhibit Efficient Antiviral Activity. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2209-2214.	8.0	67
90	Synthesis, Self-Assembly, and Photophysical Properties of Cationic Oligo(<i>p</i> -phenyleneethynylene)s. Langmuir, 2011, 27, 4945-4955.	3.5	67

#	Article	IF	Citations
91	Excited-state electron transfer in ligand-bridged dimeric complexes of osmium. The Journal of Physical Chemistry, 1986, 90, 2182-2193.	2.9	65
92	Adenosine Triphosphate Templated Self-Assembly of Cationic Porphyrin into Chiral Double Superhelices and Enzyme-Mediated Disassembly. Journal of the American Chemical Society, 2019, 141, 12610-12618.	13.7	64
93	Distance dependence of photochemical electron transfer across peptide spacers. The Journal of Physical Chemistry, 1990, 94, 2740-2743.	2.9	63
94	Membrane activity of antimicrobial phenylene ethynylene based polymers and oligomers. Soft Matter, 2012, 8, 8547.	2.7	63
95	Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers. Journal of Applied Physics, 2009, 106, .	2.5	62
96	Temperature Dependence of Pressure Sensitive Paints. AIAA Journal, 1997, 35, 306-310.	2.6	61
97	An Iridium(III) Complex that Exhibits Dual Mechanism Nonlinear Absorption. Journal of Physical Chemistry B, 2006, 110, 17302-17304.	2.6	61
98	Light and dark biocidal activity of cationic poly(arylene ethynylene) conjugated polyelectrolytes. Photochemical and Photobiological Sciences, 2009, 8, 998.	2.9	61
99	Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer. Chemical Communications, 2013, 49, 7406.	4.1	61
100	Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4616-4623.	8.0	61
101	A chromophore-quencher-based luminescence probe for DNA. Inorganic Chemistry, 1993, 32, 4994-4995.	4.0	60
102	Photophysics of π-conjugated oligomers and polymers that contain transition metal complexes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2002, 3, 1-23.	11.6	59
103	Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers. Applied Physics Letters, 2008, 93, 163305.	3.3	59
104	Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8715-8722.	8.0	59
105	Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores. Chemical Science, 2016, 7, 3621-3631.	7.4	59
106	Synthesis and characterization of Ï€-conjugated oligomers that contain metal-to-ligand charge transfer chromophoresâ€. Chemical Communications, 1999, , 1749-1750.	4.1	58
107	Intrachain Triplet Energy Transfer in Platinumâ^Acetylide Copolymers. Journal of Physical Chemistry B, 2005, 109, 18451-18459.	2.6	58
108	The Role of Exciton Hopping and Direct Energy Transfer in the Efficient Quenching of Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2006, 128, 4007-4016.	13.7	58

#	Article	IF	CITATIONS
109	Conjugated Polyelectrolyte-Grafted Silica Microspheres. Langmuir, 2007, 23, 4541-4548.	3.5	58
110	Polymer Chain Length Dependence of Amplified Fluorescence Quenching in Conjugated Polyelectrolytes. Macromolecules, 2008, 41, 3422-3428.	4.8	58
111	Light Harvesting Arrays of Polypyridine Ruthenium(II) Chromophores Prepared by Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules, 2012, 45, 2632-2642.	4.8	58
112	Solubilization sites and orientations in microheterogeneous media. Studies using donor-acceptor-substituted azobenzenes and bichromophoric solvatochromic molecules. Journal of the American Chemical Society, 1989, 111, 8494-8501.	13.7	57
113	Conjugated Polyelectrolyte Supported Bead Based Assays for Phospholipase A2 Activity. Journal of Physical Chemistry B, 2008, 112, 14492-14499.	2.6	57
114	Functional Polyelectrolytes. Langmuir, 2009, 25, 13698-13702.	3.5	57
115	Micro-heterogeneous Oxygen Response in Luminescence Sensor Films. Langmuir, 2000, 16, 9137-9141.	3.5	55
116	Morphology Evolution in Nanoscale Light-Emitting Domains in MEH-PPV/PMMA Blends. Macromolecules, 2003, 36, 8978-8985.	4.8	55
117	Meta-Linked Poly(phenylene ethynylene) Conjugated Polyelectrolyte Featuring a Chiral Side Group:Â Helical Folding and Guest Binding. Langmuir, 2006, 22, 4856-4862.	3.5	55
118	Synthesis, Self-Assembly, and Photophysical Behavior of Oligo Phenylene Ethynylenes: From Molecular to Supramolecular Properties. Langmuir, 2009, 25, 21-25.	3.5	55
119	Trans-stilbene phosphorescence. Chemical Physics Letters, 1980, 70, 233-235.	2.6	54
120	Temperature- and Pressure-Sensitive Paint Measurements in Short-Duration Hypersonic Flow. AIAA Journal, 2001, 39, 654-659.	2.6	54
121	A Platinum Acetylide Polymer with Sterically Demanding Substituents:  Effect of Aggregation on the Triplet Excited State. Inorganic Chemistry, 2005, 44, 2619-2627.	4.0	54
122	Effects of Polymer Aggregation and Quencher Size on Amplified Fluorescence Quenching of Conjugated Polyelectrolytes. Langmuir, 2007, 23, 9481-9486.	3.5	54
123	Correlation of the rate of thermal cis-trans isomerization of p-nitro-p'-(dialkylamino)azobenzenes with solvent Z value applied to study polarity in aqueous surfactant solutions. Journal of the American Chemical Society, 1982, 104, 1733-1735.	13.7	53
124	Ligand-to-ligand charge-transfer photochemistry. Journal of the American Chemical Society, 1993, 115, 5675-5683.	13.7	53
125	Photophysics of Platinumâ^'Acetylide Substituted Hexa-peri-hexabenzocoronenes. Inorganic Chemistry, 2006, 45, 2509-2519.	4.0	52
126	Insight into the Mechanism of Antimicrobial Poly(phenylene ethynylene) Polyelectrolytes: Interactions with Phosphatidylglycerol Lipid Membranesâ€Langmuir 25th Year: Molecular and macromolecular self-assemblies. Langmuir, 2009, 25, 13742-13751.	3.5	52

#	Article	IF	Citations
127	When Worlds Collide: Interactions at the Interface between Biological Systems and Synthetic Cationic Conjugated Polyelectrolytes and Oligomers. Langmuir, 2013, 29, 10635-10647.	3.5	52
128	Ten Years of Polydopamine: Current Status and Future Directions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7521-7522.	8.0	52
129	Metal-Free Nanoassemblies of Water-Soluble Photosensitizer and Adenosine Triphosphate for Efficient and Precise Photodynamic Cancer Therapy. ACS Nano, 2021, 15, 4979-4988.	14.6	52
130	Defect-Induced Loss Mechanisms in Polymer–Inorganic Planar Heterojunction Solar Cells. ACS Applied Materials & Cartagorius (1988) amp; Interfaces, 2013, 5, 7215-7218.	8.0	51
131	Bulky Phenanthroimidazole–Phenothiazine Dâ'π–A Based Organic Sensitizers for Application in Efficient Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 6758-6767.	5.1	51
132	Excited-State Structure and Delocalization in Ruthenium(II)â^Bipyridine Complexes That Contain Phenyleneethynylene Substituents. Journal of Physical Chemistry A, 2001, 105, 11118-11127.	2.5	50
133	Performance of Nonconcentrating Solar Photocatalytic Oxidation Reactors: Part l—Flat-Plate Configuration. Journal of Solar Energy Engineering, Transactions of the ASME, 1994, 116, 2-7.	1.8	49
134	Photolithographically-Patterned Electroactive Films and Electrochemically Modulated Diffraction Gratings. Langmuir, 2000, 16, 795-810.	3.5	49
135	Conjugated Polyelectrolyte Based Real-Time Fluorescence Assay for Adenylate Kinase. Analytical Chemistry, 2009, 81, 231-239.	6.5	49
136	Highly Effective Inactivation of SARS-CoV-2 by Conjugated Polymers and Oligomers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55688-55695.	8.0	48
137	Heat-Transfer Measurements in Hypersonic Flow Using Luminescent Coating Techniques. Journal of Thermophysics and Heat Transfer, 2002, 16, 516-522.	1.6	47
138	Two-Photon Excited Fluorescence of a Conjugated Polyelectrolyte and Its Application in Cell Imaging. ACS Applied Materials & Camp; Interfaces, 2010, 2, 2744-2748.	8.0	46
139	Photolithographic patterning of electroactive polymer films and electrochemically modulated optical diffraction gratings. Advanced Materials, 1996, 8, 531-534.	21.0	45
140	Charge Transfer through Terthiophene End-Capped Poly(arylene ethynylene)s. Journal of Physical Chemistry B, 2004, 108, 1544-1555.	2.6	44
141	Optimizing Simultaneous Two-Photon Absorption and Transient Tripletâ^'Triplet Absorption in Platinum Acetylide Chromophores. Journal of Physical Chemistry A, 2010, 114, 7003-7013.	2.5	44
142	Photophysics and Light-Activated Biocidal Activity of Visible-Light-Absorbing Conjugated Oligomers. ACS Applied Materials & Conjugated Oligomers, 2013, 5, 4516-4520.	8.0	44
143	Base-Free Suzuki Polymerization for the Synthesis of Polyfluorenes Functionalized with Carboxylic Acids. Macromolecules, 2007, 40, 3524-3526.	4.8	43
144	Synthesis of Monodisperse Platinum Acetylide Oligomers End-Capped with Naphthalene Diimide Units. Organometallics, 2009, 28, 4210-4216.	2.3	43

#	Article	IF	CITATIONS
145	Photochemical probes of intramolecular electron and energy transfer. Chemical Physics, 1993, 176, 305-319.	1.9	42
146	Intramolecular Energy Transfer in (diimine)Rel(CO)3-[CpMll(arene)] Dimers. Inorganic Chemistry, 1994, 33, 1354-1362.	4.0	42
147	Effect of Polymer Chain Length on Membrane Perturbation Activity of Cationic Phenylene Ethynylene Oligomers and Polymers. Langmuir, 2011, 27, 10770-10775.	3.5	42
148	Photophysical Consequences of Conformation and Aggregation in Dilute Solutions of π-Conjugated Oligomers. Langmuir, 1999, 15, 5676-5680.	3 . 5	41
149	Photophysics and Photoinduced Electron-Transfer Reactivity of Ruthenium(II) Complexes with Oligo(thiophene-bipyridine) Ligandsâ€,1. Journal of Physical Chemistry A, 2003, 107, 3476-3485.	2.5	41
150	Dark Antimicrobial Mechanisms of Cationic Phenylene Ethynylene Polymers and Oligomers against Escherichia coli. Polymers, 2011, 3, 1199-1214.	4.5	41
151	Self-Sterilizing, Self-Cleaning Mixed Polymeric Multifunctional Antimicrobial Surfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27632-27638.	8.0	41
152	In Search of Deeper Blues: <i>Trans</i> -N-Heterocyclic Carbene Platinum Phenylacetylide as a Dopant for Phosphorescent OLEDs. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41111-41114.	8.0	41
153	Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies. ACS Energy Letters, 2016, 1, 339-343.	17.4	40
154	Photoinduced Charge Separation in Platinum Acetylide Oligomersâ€. Journal of Physical Chemistry B, 2010, 114, 14763-14771.	2.6	39
155	Antibacterial Activity of Conjugated Polyelectrolytes with Variable Chain Lengths. Langmuir, 2011, 27, 10763-10769.	3. 5	39
156	Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures. ACS Energy Letters, 2020, 5, 2253-2255.	17.4	39
157	Metal to ligand charge transfer photochemistry of Re(I)-alkyl complexes. Inorganica Chimica Acta, 1993, 208, 103-106.	2.4	38
158	Intramolecular Energy Transfer to trans-Stilbene. Journal of Physical Chemistry A, 1998, 102, 5577-5584.	2.5	38
159	Photophysics of Ir(iii) complexes with oligo(arylene ethynylene) ligandsElectronic supplementary information (ESI) available: synthesis and characterization of 1 and 2; electrochemical data and absorption spectrum of 3. See http://www.rsc.org/suppdata/cc/b2/b206987c/. Chemical Communications, 2002, 2504-2505.	4.1	38
160	Principal Component Analysis Calibration Method for Dual-Luminophore Oxygen and Temperature Sensor Films: Application to Luminescence Imaging. Langmuir, 2005, 21, 9110-9120.	3. 5	38
161	Morphology and Oxygen Sensor Response of Luminescent Ir-Labeled Poly(dimethylsiloxane)/Polystyrene Polymer Blend Films. Langmuir, 2005, 21, 8255-8262.	3.5	38
162	Water-Soluble Conjugated Polyelectrolytes with Branched Polyionic Side Chains. Macromolecules, 2011, 44, 4742-4751.	4.8	38

#	Article	IF	Citations
163	Photophysics and Nonlinear Absorption of Gold(I) and Platinum(II) Donor–Acceptor–Donor Chromophores. Inorganic Chemistry, 2015, 54, 10007-10014.	4.0	37
164	Photophysics of Organometallic Platinum(II) Derivatives of the Diketopyrrolopyrrole Chromophore. Journal of Physical Chemistry A, 2014, 118, 11735-11743.	2.5	36
165	Triplet Energy Transport in Platinum-Acetylide Light Harvesting Arrays. Journal of Physical Chemistry B, 2015, 119, 7198-7209.	2.6	36
166	Pressure-sensitive paint measurements in a shock tube. Experiments in Fluids, 2000, 28, 21-28.	2.4	35
167	Metal-to-ligand charge transfer absorption in a rhenium(I) complex that contains a π-conjugated bipyridine acceptor ligand. Chemical Physics Letters, 2001, 339, 255-262.	2.6	35
168	Variable-Band-Gap Poly(arylene ethynylene) Conjugated Polyelectrolytes Adsorbed on Nanocrystalline TiO ₂ : Photocurrent Efficiency as a Function of the Band Gap. ACS Applied Materials & Interfaces, 2009, 1, 381-387.	8.0	35
169	Conjugated-Polyelectrolyte-Grafted Cotton Fibers Act as "Micro Flypaper―for the Removal and Destruction of Bacteria. ACS Applied Materials & Destruction of Bacteria. ACS Applied Materials & Destruction of Bacteria.	8.0	35
170	Intramolecular Triplet Energy Transfer in Anthracene-Based Platinum Acetylide Oligomers. Journal of Physical Chemistry B, 2013, 117, 9025-9033.	2.6	35
171	Effect of Thermal Annealing on Charge Transfer States and Charge Trapping in PCDTBT:PC ₇₀ BM Solar Cells. Advanced Electronic Materials, 2015, 1, 1500167.	5.1	35
172	Polymer Monoliths Containing Two-Photon Absorbing Phenylenevinylene Platinum(II) Acetylide Chromophores for Optical Power Limiting. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10795-10805.	8.0	35
173	Ultrafast Dynamics in Multifunctional Ru(II)-Loaded Polymers for Solar Energy Conversion. Accounts of Chemical Research, 2015, 48, 818-827.	15.6	35
174	Efficient Light-Driven Oxidation of Alcohols Using an Organic Chromophore–Catalyst Assembly Anchored to TiO ₂ . ACS Applied Materials & Interfaces, 2016, 8, 9125-9133.	8.0	34
175	Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catalysis, 2022, 12, 1357-1363.	11.2	34
176	Concerning the diene-induced photodechlorination of chloroaromatics. Journal of the American Chemical Society, 1979, 101, 1895-1896.	13.7	33
177	Performance of Nonconcentrating Solar Photocatalytic Oxidation Reactors: Part II—Shallow Pond Configuration. Journal of Solar Energy Engineering, Transactions of the ASME, 1994, 116, 8-13.	1.8	33
178	Outer Sphere Metal-to-Ligand Charge Transfer in Organometallic Ion Pairs. Inorganic Chemistry, 1997, 36, 6224-6234.	4.0	33
179	Photoluminescence and Electroluminescence of d6Metalâ^'Organic Conjugated Oligomers:Â Correlation of Photophysics and Device Performance. Journal of Physical Chemistry B, 2003, 107, 12569-12572.	2.6	33
180	Photophysics and non-linear absorption of Au(<scp>i</scp>) and Pt(<scp>ii</scp>) acetylide complexes of a thienyl-carbazole chromophore. Dalton Transactions, 2014, 43, 17721-17728.	3.3	33

#	Article	IF	CITATIONS
181	Protein Induced Aggregation of Conjugated Polyelectrolytes Probed with Fluorescence Correlation Spectroscopy: Application to Protein Identification. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7643-7651.	8.0	33
182	Poly(fluorene-co-thiophene)-based ionic transition-metal complex polymers for solar energy harvesting and storage applications. Polymer Chemistry, 2014, 5, 2363.	3.9	33
183	Redox Flow Batteries. ACS Energy Letters, 2017, 2, 1368-1369.	17.4	33
184	<i>trans</i> - <i>N</i> -(Heterocyclic Carbene) Platinum(II) Acetylide Chromophores as Phosphors for OLED Applications. ACS Applied Electronic Materials, 2020, 2, 1026-1034.	4.3	33
185	Directed charge transfer. Reductive quenching in a chromophore-quencher complex. Inorganic Chemistry, 1985, 24, 2596-2597.	4.0	32
186	Solvent-induced excited-state quenching in a chromophore-quencher complex. The Journal of Physical Chemistry, 1990, 94, 2229-2232.	2.9	32
187	Radical Ion States of Platinum Acetylide Oligomers. Journal of Physical Chemistry B, 2007, 111, 10871-10880.	2.6	32
188	High Efficiency Platinum Acetylide Nonlinear Absorption Chromophores Covalently Linked to Poly(methyl methacrylate). ACS Applied Materials & Samp; Interfaces, 2013, 5, 7867-7874.	8.0	32
189	Ï€-Conjugated Organometallic Isoindigo Oligomer and Polymer Chromophores: Singlet and Triplet Excited State Dynamics and Application in Polymer Solar Cells. ACS Applied Materials & Dynamics and Application in Polymer Solar Cells. ACS Applied Materials & Dynamics and Application in Polymer Solar Cells. ACS Applied Materials & Dynamics and Triplet (1975) 1875 1875 1875 1875 1875 1875 1875 1875	8.0	32
190	Evidence of Molecular Structure Dependent Charge Transfer between Isoindigo-Based Polymers and Fullerene. Chemistry of Materials, 2016, 28, 2433-2440.	6.7	32
191	Intramolecular charge transfer properties of dicyanovinyl-substituted aromatics. The Journal of Physical Chemistry, 1991, 95, 5737-5742.	2.9	31
192	Luminescent Coreâ^'Shell Photonic Crystals from Poly(phenylene ethynylene) Coated Silica Spheres. Langmuir, 2005, 21, 5207-5211.	3.5	31
193	Variable-Gap Conjugated Oligomers Grafted to CdSe Nanocrystals. Chemistry of Materials, 2012, 24, 3143-3152.	6.7	31
194	Light Harvesting and Charge Separation in a π-Conjugated Antenna Polymer Bound to TiO ₂ . Journal of Physical Chemistry C, 2014, 118, 28535-28541.	3.1	31
195	Effect of Oligomer Length on Photophysical Properties of Platinum Acetylide Donor–Acceptor–Donor Oligomers. Journal of Physical Chemistry A, 2016, 120, 5512-5521.	2.5	31
196	Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19529-19534.	8.0	31
197	Competition between Ultrafast Energy Flow and Electron Transfer in a Ru(II)-Loaded Polyfluorene Light-Harvesting Polymer. Journal of Physical Chemistry Letters, 2012, 3, 2453-2457.	4.6	30
198	Antimicrobial Activity of Cationic Conjugated Polyelectrolytes and Oligomers against <i>Saccharomyces cerevisiae</i> Vegetative Cells and Ascospores. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4555-4561.	8.0	30

#	Article	IF	CITATIONS
199	Visible-Light-Driven Photocatalytic Water Oxidation by a π-Conjugated Donor–Acceptor–Donor Chromophore/Catalyst Assembly. ACS Energy Letters, 2018, 3, 2114-2119.	17.4	30
200	Light-Activated Antifungal Properties of Imidazolium-Functionalized Cationic Conjugated Polymers. Chemistry of Materials, 2020, 32, 6186-6196.	6.7	30
201	Photoreduction of indigo dyes by electron donors. One- and two-electron-transfer reactions as a consequence of excited-state quenching. Journal of the American Chemical Society, 1986, 108, 2646-2655.	13.7	29
202	C-C Bond Fragmentation as a Probe for Photoinduced Intramolecular Electron Transfer. The Journal of Physical Chemistry, 1995, 99, 1961-1968.	2.9	29
203	Temperature-Independent Pressure-Sensitive Paint Based on a Bichromophoric Luminophore. Applied Spectroscopy, 2000, 54, 856-863.	2.2	29
204	Photophysics of Diplatinum Polyynediyl Oligomers: Chain Length Dependence of the Triplet State in sp Carbon Chains. Inorganic Chemistry, 2008, 47, 2955-2963.	4.0	29
205	Triplet Exciton Diffusion in Platinum Polyyne Films. Journal of Physical Chemistry C, 2014, 118, 24282-24289.	3.1	29
206	Photoinduced Electron Transfer in Naphthalene Diimide End-Capped Thiophene Oligomers. Journal of Physical Chemistry A, 2017, 121, 9579-9588.	2.5	29
207	Structureâ^'Optical Property Relationships in Organometallic Sydnones. Journal of Physical Chemistry A, 2005, 109, 999-1007.	2.5	28
208	High-Purity and Saturated Deep-Blue Luminescence from <i>trans</i> -NHC Platinum(II) Butadiyne Complexes: Properties and Organic Light Emitting Diode Application. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5327-5337.	8.0	28
209	One-pot synthesis of 2,5-diethynyl-3,4-dibutylthiophene substituted multitopic bipyridine ligands: redox and photophysical properties of their ruthenium(ii) complexes. Chemical Communications, 2003, , 288-289.	4.1	27
210	Intercalation-FRET Biosensor with a Helical Conjugated Polyelectrolyte. Langmuir, 2010, 26, 14427-14429.	3. 5	27
211	Effect of Isomerism and Chain Length on Electronic Structure, Photophysics, and Sensitizer Efficiency in Quadrupolar (Donor) ₂ –Acceptor Systems for Application in Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5221-5227.	8.0	27
212	Enhanced Fluorescence Properties of Poly(phenylene ethynylene)-Conjugated Polyelectrolytes Designed to Avoid Aggregation. ACS Macro Letters, 2014, 3, 405-409.	4.8	27
213	Effect of Polymer Side Chains on Charge Generation and Disorder in PBDTTPD Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26999-27005.	8.0	27
214	Biomimetic Light-Harvesting Antenna Based on the Self-Assembly of Conjugated Polyelectrolytes Embedded within Lipid Membranes. ACS Nano, 2016, 10, 10598-10605.	14.6	27
215	Cyclometalated Platinum-Containing Diketopyrrolopyrrole Complexes and Polymers: Photophysics and Photovoltaic Applications. Chemistry of Materials, 2017, 29, 8449-8461.	6.7	27
216	Quantitative Determination of Dark and Light-Activated Antimicrobial Activity of Poly(Phenylene) Tj ETQq0 0 0 rg	BT /Overlo 8.0	ock 10 Tf 50 6 27

13

Interfaces, 2020, 12, 21322-21329.

#	Article	IF	Citations
217	Photoinduced organic donor to metal electron transfer across a rigid spacer. The Journal of Physical Chemistry, 1990, 94, 8745-8748.	2.9	26
218	Direct Observation of Ultrafast C-C Bond Fragmentation in a Diamine Radical Cation. The Journal of Physical Chemistry, 1995, 99, 11801-11804.	2.9	26
219	Carbonâ^'Carbon Bond Fragmentation in Aminoalcohol Radical Cations. Kinetics, Thermodynamic Correlations, and Mechanism. Journal of the American Chemical Society, 1996, 118, 5655-5664.	13.7	26
220	Light-Harvesting Polymers: Ultrafast Energy Transfer in Polystyrene-Based Arrays of π-Conjugated Chromophores. Journal of Physical Chemistry B, 2014, 118, 372-378.	2.6	26
221	Photophysical properties of <i>trans</i> -platinum acetylide complexes featuring N-heterocyclic carbene ligands. Dalton Transactions, 2014, 43, 17712-17720.	3.3	26
222	Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex. Journal of Physical Chemistry Letters, 2014, 5, 3386-3390.	4.6	26
223	Two-Photon Absorption of Cationic Conjugated Polyelectrolytes: Effects of Aggregation and Application to 2-Photon-Sensitized Fluorescence from Green Fluorescent Protein. Chemistry of Materials, 2017, 29, 3295-3303.	6.7	26
224	Excited-State Turn-On of Aurophilicity and Tunability of Relativistic Effects in a Series of Digold Triazolates Synthesized via iClick. Journal of the American Chemical Society, 2020, 142, 8331-8341.	13.7	26
225	Frequency Modulated Femtosecond Stimulated Raman Spectroscopy of Ultrafast Energy Transfer in a Donor–Acceptor Copolymer. Journal of Physical Chemistry B, 2013, 117, 8245-8255.	2.6	25
226	Polymerâ€Based Ruthenium(II) Polypyridyl Chromophores on TiO ₂ for Solar Energy Conversion. Chemistry - an Asian Journal, 2016, 11, 1257-1267.	3.3	25
227	Photochemical reactions in organized assemblies. 43. Micelle and vesicle solubilization sites. Determination of micropolarity and microviscosity using photophysics of a dipolar olefin. Journal of the American Chemical Society, 1985, 107, 507-509.	13.7	24
228	Applications of Inorganic Photochemistry in the Chemical and Biological Sciences - Contemporary Developments. Journal of Chemical Education, 1997, 74, 633.	2.3	24
229	Phosphorescence quenching of a platinum acetylide polymer by transition metal ions. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 79-85.	3.9	24
230	Polymer-based chromophore–catalyst assemblies for solar energy conversion. Nano Convergence, 2017, 4, 37.	12.1	24
231	Functionalization of Water-Soluble Conjugated Polymers for Bioapplications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20506-20519.	8.0	24
232	Photochemical reactivity in organized assemblies. 32. Photoreactivity of surfactant ketones as a probe of the microenvironment of organized media. Journal of the American Chemical Society, 1983, 105, 3951-3956.	13.7	23
233	Ligand-ligand charge-transfer excited states of osmium(II) complexes. The Journal of Physical Chemistry, 1989, 93, 4511-4522.	2.9	23
234	Direct observation of carbon-carbon bond fragmentation in .alphaamino alcohol radical cations. The Journal of Physical Chemistry, 1993, 97, 9078-9080.	2.9	23

#	Article	IF	Citations
235	Photophysics of Tungsten and Molybdenum Arylcarbyne Complexes. Observation of the Lowest Excited State by Laser Flash Photolysis. Inorganic Chemistry, 1996, 35, 7769-7775.	4.0	23
236	Luminescent photoelastic coatings. Experimental Mechanics, 2004, 44, 416-424.	2.0	23
237	Energy Transfer between Conjugated Polyelectrolytes in Layer-by-Layer Assembled Films. Langmuir, 2011, 27, 5021-5028.	3.5	23
238	An in situ SERS study of substrate-dependent surface plasmon induced aromatic nitration. Journal of Materials Chemistry C, 2015, 3, 5285-5291.	5.5	23
239	Conjugated Polyelectrolyte-Sensitized TiO ₂ Solar Cells: Effects of Chain Length and Aggregation on Efficiency. ACS Applied Materials & Interfaces, 2015, 7, 16601-16608.	8.0	23
240	Ru(bpy) ₃ ²⁺ derivatized polystyrenes constructed by nitroxide-mediated radical polymerization. Relationship between polymer chain length, structure and photophysical properties. Polymer Chemistry, 2015, 6, 8184-8193.	3.9	23
241	Detergent-induced self-assembly and controllable photosensitizer activity of diester phenylene ethynylenes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7278-7282.	7.1	23
242	Excitation-Wavelength-Dependent Photoinduced Electron Transfer in a π-Conjugated Diblock Oligomer. Journal of the American Chemical Society, 2020, 142, 12658-12668.	13.7	23
243	Photocycloaddition of anthracene to trans,trans-2,4-hexadiene. Journal of the American Chemical Society, 1986, 108, 2674-2687.	13.7	22
244	Conjugated Polyelectrolyte Dendrimers: Aggregation, Photophysics, and Amplified Quenching. Langmuir, 2012, 28, 16679-16691.	3.5	22
245	Ultrafast Formation of a Long-Lived Charge-Separated State in a Ru-Loaded Poly(3-hexylthiophene) Light-Harvesting Polymer. Journal of Physical Chemistry Letters, 2013, 4, 2269-2273.	4.6	22
246	Remarkable Photophysics and Amplified Quenching of Conjugated Polyelectrolyte Oligomers. Journal of Physical Chemistry Letters, 2013, 4, 1410-1414.	4.6	22
247	Surface Modification of Multiwalled Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl methacrylate) Composites. ACS Applied Materials & Diterfaces, 2015, 7, 12903-12913.	8.0	22
248	Effect of Conjugation Length on Photoinduced Charge Transfer in π-Conjugated Oligomer-Acceptor Dyads. Journal of Physical Chemistry A, 2017, 121, 4891-4901.	2.5	22
249	A novel hydrogen-bonded organic framework for the sensing of two representative organic arsenics. Canadian Journal of Chemistry, 2020, 98, 352-357.	1.1	22
250	An Application Exploiting Aurophilic Bonding and iClick to Produce White Light Emitting Materials. Inorganic Chemistry, 2020, 59, 1893-1904.	4.0	22
251	Direct observation of intramolecular electron transfer in a photochemically prepared mixed-valence dimer. Inorganic Chemistry, 1985, 24, 2121-2123.	4.0	21
252	Atom Transfer Radical Polymerization Preparation and Photophysical Properties of Polypyridylruthenium Derivatized Polystyrenes. Inorganic Chemistry, 2013, 52, 8511-8520.	4.0	21

#	Article	IF	Citations
253	Interaction of Anionic Phenylene Ethynylene Polymers with Lipids: From Membrane Embedding to Liposome Fusion. Langmuir, 2014, 30, 10704-10711.	3.5	21
254	Microstructured Photopolymer Films of a Ruthenium(II) Polypyridine Complex. Fabrication of an Electrochemically Switchable Phase Grating. Journal of the American Chemical Society, 1994, 116, 8380-8381.	13.7	20
255	Photophysics of phenyleneethynylene metal–organic oligomers. Probing the lowest excited state by time-resolved IR spectroscopy. Chemical Communications, 2001, , 1834-1835.	4.1	20
256	Amplified quenching in metal–organic conjugated polymersElectronic supplementary information (ESI) available: complete details concerning the synthesis and characterization of the new materials, NMR and electrospray mass spectra, absorption and emission spectra of P-Ru and P-Os, and Stern–Volmer plots. See http://www.rsc.org/suppdata/cc/b2/b211575a/. Chemical Communications, 2003, 650-651.	4.1	20
257	A Sensitive and Selective Mercury(II) Sensor Based on Amplified Fluorescence Quenching in a Conjugated Polyelectrolyte/Spiroâ€Cyclic Rhodamine System. Macromolecular Rapid Communications, 2013, 34, 791-795.	3.9	20
258	Reusable nanoengineered surfaces for bacterial recruitment and decontamination. Biointerphases, 2016, 11, 019003.	1.6	20
259	A new synthetic route to in-chain metallopolymers via copper(<scp>i</scp>) catalyzed azide–platinum–acetylide iClick. Chemical Communications, 2017, 53, 9934-9937.	4.1	20
260	Efficacy of End-Only-Functionalized Oligo(arylene-ethynylene)s in Killing Bacterial Biofilms. Langmuir, 2012, 28, 11286-11290.	3.5	19
261	Ion-Induced Aggregation of Conjugated Polyelectrolytes Studied by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 16314-16324.	2.6	19
262	Pyrophosphate Sensor Based on Principal Component Analysis of Conjugated Polyelectrolyte Fluorescence. ACS Omega, 2016, 1, 648-655.	3.5	19
263	Radical Cation Probes for Photoinduced Intramolecular Electron Transfer in Metalâ^'Organic Complexes. The Journal of Physical Chemistry, 1996, 100, 5408-5419.	2.9	18
264	Photophysics of Ï€-conjugated metalÂorganic oligomers. Pure and Applied Chemistry, 2001, 73, 497-501.	1.9	18
265	Energy Transfer Dynamics in a Series of Conjugated Polyelectrolytes with Varying Chain Length. Journal of Physical Chemistry C, 2008, 112, 16140-16147.	3.1	18
266	Aggregation-Induced Amplified Quenching in Conjugated Polyelectrolytes with Interrupted Conjugation. Langmuir, 2011, 27, 11732-11736.	3.5	18
267	Photophysics and phosphate fluorescence sensing by poly(phenylene ethynylene) conjugated polyelectrolytes with branched ammonium side groups. Journal of Materials Chemistry C, 2018, 6, 3722-3730.	5.5	18
268	Blue Phosphorescent <i>trans</i> -N-Heterocyclic Carbene Platinum Acetylides: Dependence on Energy Gap and Conformation. Journal of Physical Chemistry A, 2019, 123, 9069-9078.	2.5	18
269	Photoinduced Energy Transfer between Ruthenium and Osmium tris-Bipyridine Complexes Covalently Pillared into \hat{l}^3 -ZrP. Langmuir, 2003, 19, 30-39.	3.5	17

Spectroscopy and Transport of the Triplet Exciton in a Terthiophene End-Capped Poly(phenylene) Tj ETQq $0\ 0\ 0\ rgB_{2.6}^{T}/Overlock_{17}^{10}\ Tf\ 50\ organism}$

#	Article	IF	Citations
271	An Editor's Musings for the New Year. ACS Applied Materials & Diterfaces, 2017, 9, 1-2.	8.0	17
272	Celebrating Ten Years of <i>ACS Applied Materials & Interfaces </i> Interfaces ACS Applied Materials & Interfaces ACS Applied Materials & Interfaces	8.0	17
273	Photochemistry of Intramolecular Charge Transfer Excited States in Donor-Acceptor-Substituted Diamines. The Journal of Physical Chemistry, 1995, 99, 6876-6888.	2.9	16
274	Syntheses, Structures, and Electronic and Photophysical Properties of Unsymmetrically Substituted Butadiynediyl and Hexatriynediyl Complexes Derived from (C ₆ F ₅)(R ₃ P) ₂ Pt, (<i>p</i> -tol)(R ₃ P) ₂ Pt, and (Ph ₃ P)Au End-Groups. Organometallics, 2008, 27, 4979-4991.	2.3	16
275	Virtual Issue on Metal-Halide Perovskite Nanocrystalsâ€"A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	6.7	16
276	Solubilization in surfactant media: the use of an isomerizable solute-probe to determine microheterogeneity in microemulsions. Journal of the American Chemical Society, 1983, 105, 6734-6735.	13.7	15
277	Photoreduction of thioindigo: photoinitiated two-electron transfer within a substrate-quencher pair. Journal of the American Chemical Society, 1983, 105, 6326-6327.	13.7	15
278	On the Accurate Determination of Reaction Rate Constants in Batch-Type Solar Photocatalytic Oxidation Facilities. Journal of Solar Energy Engineering, Transactions of the ASME, 1994, 116, 19-24.	1.8	15
279	Ion-Pair Charge Transfer Photochemistry in Rhenium(I) Borate Salts. Inorganic Chemistry, 1996, 35, 6800-6808.	4.0	15
280	Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process. Journal of Physical Chemistry C, 2015, 119, 15919-15925.	3.1	15
281	Cage escape yields for photoinduced bimolecular electron transfer reactions of Re(I) complexes. Inorganica Chimica Acta, 1994, 225, 41-49.	2.4	14
282	Photophysics and Photoredox Properties of the Tungsten Carbyne Complex Cp{P(OPh)3}(CO)Wâ<®CPh. Inorganic Chemistry, 1999, 38, 3254-3257.	4.0	14
283	Luminescent Strain-Sensitive Coatings. AIAA Journal, 2004, 42, 1662-1668.	2.6	14
284	Photophysics and self-assembly of symmetrical and unsymmetrical cationic oligophenylene ethynylenes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 4-6.	3.9	14
285	Poly(phenylene ethynylene) Conjugated Polyelectrolytes Synthesized via Chain-Growth Polymerization. Macromolecules, 2019, 52, 3845-3851.	4.8	14
286	Fluorescent Charge-Transfer Excited States in Acceptor Derivatized Thiophene Oligomers. Journal of Physical Chemistry A, 2020, 124, 7001-7013.	2.5	14
287	Ultrafast photoinduced electron transfer in conjugated polyelectrolyte–acceptor ion pair complexes. Materials Chemistry Frontiers, 2020, 4, 3649-3659.	5.9	14
288	Charge Transfer Interactions in Micelles and Vesicles. Inter―and Intramolecular Probes of Solubilization Site Polarity. Israel Journal of Chemistry, 1987, 28, 37-45.	2.3	13

#	Article	IF	Citations
289	Photoinduced Charge Separation Promoted by Ring Opening of a Piperazine Radical Cation. Journal of the American Chemical Society, 1996, 118, 3057-3058.	13.7	13
290	Intramolecular Triplet Energy Transfer in Donor–Acceptor Molecules Linked by a Crown Ether Bridge. Chemistry - A European Journal, 2006, 12, 5238-5245.	3.3	13
291	pH-Dependent Optical Properties of a Poly(phenylene ethynylene) Conjugated Polyampholyte. Langmuir, 2011, 27, 1565-1568.	3.5	13
292	Conjugated polymers for pure UV light emission: Poly(<i>meta</i> â€phenylenes). Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 557-565.	2.1	13
293	Photochemistry of a Model Cationic $\langle i \rangle p \langle i \rangle$ -Phenylene Ethynylene in Water. Journal of Physical Chemistry Letters, 2012, 3, 1363-1368.	4.6	13
294	Confronting Racism in Chemistry Journals. ACS Applied Materials & Distribution (12, 28925-28927.	8.0	13
295	Helical Conjugated Polyelectrolyte Aggregation Induced by Biotin–Avidin Interaction. Journal of Physical Chemistry Letters, 2012, 3, 1711-1715.	4.6	12
296	Conjugated polyelectrolytes with guanidinium side groups. Synthesis, photophysics and pyrophosphate sensing. Photochemical and Photobiological Sciences, 2014, 13, 293-300.	2.9	12
297	Quadrupolar (donor)2acceptor-acid chromophores for dye-sensitized solar cells: influence of the core acceptor. Journal of Materials Chemistry A, 2014, 2, 9866.	10.3	12
298	Photocathode Chromophore–Catalyst Assembly via Layer-By-Layer Deposition of a Low Band-Gap Isoindigo Conjugated Polyelectrolyte. ACS Applied Energy Materials, 2018, 1, 62-67.	5.1	12
299	Cu-Catalyzed Azide-Pt-Acetylide Cycloaddition: Progress toward a Conjugated Metallopolymer via iClick. Organometallics, 2018, 37, 4545-4550.	2.3	12
300	Role of Structure in Ultrafast Charge Separation and Recombination in Naphthalene Diimide End-Capped Thiophene Oligomers. Journal of Physical Chemistry C, 2018, 122, 18802-18808.	3.1	12
301	Organic Chromophores Designed for Hole Injection into Wide-Band-Gap Metal Oxides for Solar Fuel Applications. Chemistry of Materials, 2020, 32, 8158-8168.	6.7	12
302	Prediction of Internal Reorganization Energy in Photoinduced Electron Transfer Processes of Molecular Dyads. Journal of Physical Chemistry A, 2020, 124, 9478-9486.	2.5	12
303	Photoinduced Electron Transfer Across Peptide Spacers. Advances in Chemistry Series, 1989, , 101-124.	0.6	11
304	Solvent tuned excited state configuration mixing in a π-conjugated metal–organic oligomer. Chemical Communications, 2004, , 1510-1511.	4.1	11
305	Amplified fluorescence quenching and biosensor application of a poly (para-phenylene) cationic polyelectrolyte. Research on Chemical Intermediates, 2007, 33, 79-90.	2.7	11
306	Interfacial Morphology and Photoelectrochemistry of Conjugated Polyelectrolytes Adsorbed on Single Crystal TiO ₂ . Langmuir, 2011, 27, 11906-11916.	3.5	11

#	Article	IF	CITATIONS
307	Intercalation of Alkynylplatinum(II) Terpyridine Complexes into a Helical Poly(phenylene ethynylene) Sulfonate: Application to Protein Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33461-33469.	8.0	11
308	Pyridine-terminated low gap π-conjugated oligomers: design, synthesis, and photophysical response to protonation and metalation. Organic Chemistry Frontiers, 2018, 5, 3170-3177.	4.5	11
309	Remarkable Amplification of Polyethylenimine-Mediated Gene Delivery Using Cationic Poly(phenylene) Tj ETQq1	1 0.78431 [,] 8.0	4 rgBT /Over
310	Fluorescence spectral shape analysis for nucleotide identification. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15386-15391.	7.1	11
311	SPAAC iClick: progress towards a bioorthogonal reaction in-corporating metal ions. Dalton Transactions, 2021, 50, 12681-12691.	3.3	11
312	Intramolecular charge transfer in pyridinium-substituted Ru-polypyridine complexes. Inorganica Chimica Acta, 2000, 300-302, 414-426.	2.4	10
313	Title is missing!. Journal of Fluorescence, 2000, 10, 35-40.	2.5	10
314	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angewandte Chemie, 2017, 129, 13640-13643.	2.0	10
315	Triplet Sensitization in an Anionic Poly(phenyleneethynylene) Conjugated Polyelectrolyte by Cationic Iridium Complexes. Journal of Physical Chemistry A, 2013, 117, 7818-7822.	2.5	9
316	Photophysics of Platinum Tetrayne Oligomers: Delocalization of Triplet Exciton. Journal of Physical Chemistry A, 2014, 118, 10333-10339.	2.5	9
317	Stereochemical Effects on Platinum Acetylide Two-Photon Chromophores. Journal of Physical Chemistry A, 2019, 123, 9382-9393.	2.5	9
318	Free Energy Dependence of Photoinduced Electron Transfer in Octathiophene-Diimide Dyads. Journal of Physical Chemistry A, 2020, 124, 21-29.	2.5	9
319	Biofunctionalization of Water-Soluble poly(Phenylene Ethynylene)s. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53310-53317.	8.0	9
320	Light-Harvesting Two-Photon-Absorbing Polymers. Macromolecules, 2020, 53, 6279-6287.	4.8	9
321	Charge-Transfer Dynamics between Cesium Lead Halide Perovskite Nanocrystals and Surface-Anchored Naphthalimide Acceptors. Journal of Physical Chemistry C, 2021, 125, 14778-14785.	3.1	9
322	Aggregation-Enhanced Two-Photon Absorption of Anionic Conjugated Polyelectrolytes. Journal of Physical Chemistry Letters, 2020, 11, 8292-8296.	4.6	8
323	Materials Applications of Aptamers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9289-9290.	8.0	8
324	Ultrafast Excited-State Dynamics in <i>trans</i> -(N-Heterocyclic carbene)platinum(II) Acetylide Complexes. Inorganic Chemistry, 2021, 60, 10065-10074.	4.0	8

#	Article	IF	CITATIONS
325	Photoinduced Intramolecular Electron Transfer in Phenylene Ethynylene Naphthalimide Oligomers. Journal of Physical Chemistry A, 2021, 125, 3863-3873.	2.5	8
326	Identifying the Polymorphs of Zr-Based Metal–Organic Frameworks via Time-Resolved Fluorescence Imaging. , 2022, 4, 370-377.		8
327	One- and Two-Photon Activated Release of Oxaliplatin from a Pt(IV)-Functionalized Poly(phenylene) Tj ETQq1 1 (0.784314 8.0	rgBT /Overloc
328	Full-field strain measurement using a luminescent coating. Experimental Mechanics, 2003, 43, 61-68.	2.0	7
329	Platinum carbon bond formation via Cu(<scp>i</scp>) catalyzed Stille-type transmetallation: reaction scope and spectroscopic study of platinum-arylene complexes. Dalton Transactions, 2015, 44, 17932-17938.	3.3	7
330	Role of Macromolecular Structure in the Ultrafast Energy and Electron Transfer Dynamics of a Light-Harvesting Polymer. Journal of Physical Chemistry B, 2016, 120, 7937-7948.	2.6	7
331	Elucidating the Effects of Solvating Side Chains on the Rigidity and Aggregation Tendencies of Conjugated Polymers with Molecular Dynamics Simulations Using DFT Tight Binding. Journal of Physical Chemistry A, 2019, 123, 3293-3299.	2.5	7
332	Photochemistry of a square-planar cobalt(III) complex. Inorganic Chemistry, 1990, 29, 2015-2017.	4.0	6
333	Synthesis of substituted poly(1-vinylpyrene)s and investigation of their fluorescent properties. Journal of Polymer Science Part A, 1993, 31, 2187-2195.	2.3	6
334	Principal component analysis of dual-luminophore pressure/temperature sensitive paints. Journal of Visualization, 2001, 4, 121-129.	1.8	6
335	Photosensitization of Single-Crystal ZnO by a Conjugated Polyelectrolyte Designed to Avoid Aggregation. Journal of Physical Chemistry Letters, 2013, 4, 3216-3220.	4.6	6
336	Polymer Chromophore–Catalyst Assembly for Photocatalytic CO2 Reduction. ACS Applied Energy Materials, 2021, 4, 7030-7039.	5.1	6
337	Rapid and Effective Inactivation of SARS-CoV-2 with a Cationic Conjugated Oligomer with Visible Light: Studies of Antiviral Activity in Solutions and on Supports. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4892-4898.	8.0	6
338	"Light Switch―Effect Upon Binding of Ru-dppz to Water-Soluble Conjugated Polyelectrolyte Dendrimers. Journal of Physical Chemistry Letters, 2012, 3, 1707-1710.	4.6	5
339	Interfacial Dynamics within an Organic Chromophore-Based Water Oxidation Molecular Assembly. ACS Applied Materials & Diterfaces, 2017, 9, 16651-16659.	8.0	5
340	Structural, Photophysical, and Photochemical Characterization of Zinc Protoporphyrin IX in a Dimeric Variant of an Iron Storage Protein: Insights into the Mechanism of Photosensitized H ₂ Generation. Journal of Physical Chemistry B, 2019, 123, 6740-6749.	2.6	5
341	Ultrafast Energy Transfer in Fully Conjugated Thiophene-Benzothiadiazole Capped Poly(Phenylene) Tj ETQq1 1 C	0.784314 i 3.1	rgBŢ /Overlo <mark>c</mark>
342	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5

#	Article	IF	Citations
343	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
344	Fluorescence Imaging of Mammalian Cells with Cationic Conjugated Polyelectrolytes. ChemPhotoChem, 2021, 5, 123-130.	3.0	5
345	Platinum Poly-yne Featuring N-Heterocyclic Carbene Ligands: Synthesis, Properties, and Organic Light-Emitting Diode Application. Macromolecules, 2021, 54, 9888-9895.	4.8	5
346	Ultrafast Aggregation-Induced Tunable Emission Enhancement in a Benzothiadiazole-Based Fluorescent Metal–Organic Framework Linker. Journal of Physical Chemistry B, 2021, 125, 13298-13308.	2.6	5
347	Forum on Artificial Intelligence/Machine Learning for Design and Development of Applied Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53301-53302.	8.0	5
348	Photoinduced Intramolecular Electron Transfer in RE(I) Chromophore-Quencher Complexes: Rate Dependence in the Inverted Region and the Use of a Rigid Organic Spacer. Molecular Crystals and Liquid Crystals, 1991, 194, 113-121.	0.7	4
349	Photolithographically defined electropolymerized films. Fabrication of an electrochemically switchable diffraction grating comprised of poly-(bpy)2Ru(vpy)22+. Journal of the Chemical Society Chemical Communications, 1995, , 1945.	2.0	4
350	2,5-Dimethyl-2,4-hexadiene induced photodechlorination of 9,10-dichloroanthracene. Photochemical and Photobiological Sciences, 2009, 8, 856.	2.9	4
351	Energy Transfer in Extended Thienylene-Phenylene-Ethynylene Dendrimers. Journal of Physical Chemistry B, 2011, 115, 15214-15220.	2.6	4
352	Enhancing the photostability of poly(phenylene ethynylene) for single particle studies. Photochemical and Photobiological Sciences, 2017, 16, 1821-1831.	2.9	4
353	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
354	Photophysics and solar cell application of a benzodithiophene conjugated polymer containing cyclometalated platinum units. Journal of Photochemistry and Photobiology, 2021, 8, 100060.	2.5	4
355	A Dual Luminophore Pressure Sensitive Paint: Eliminating the Temperature Interference in the Measurement of Oxygen Partial Pressure. , 2005, , 285-302.		3
356	Interaction of a Poly(phenylene vinylene) with an Organometallic Lewis Acid Additive: Fundamentals and Application in Polymer Solar Cells. Chemistry of Materials, 2018, 30, 5968-5977.	6.7	3
357	Introducing <i>ACS Applied Bio Materials</i> . ACS Applied Bio Materials, 2018, 1, 1-2.	4.6	3
358	<i>ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. Chemistry of Materials, 2019, 31, 563-564.</i>	6.7	3
359	Polymeric Nonlinear Absorption Chromophore Array from Controlled Radical Polymerization and "Click―Chemistry. ACS Applied Polymer Materials, 2020, 2, 4570-4580.	4.4	3
360	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3

#	Article	IF	CITATIONS
361	Photophysics of Oligothiophenes End apped with Platinum(II) Auxochromes. ChemPhotoChem, 2021, 5, 160-166.	3.0	3
362	Realâ€Time Spectral Evolution of Interchain Coupling and Assembling during Solvent Vapor Annealing of Dispersed Conjugated Polymers. Macromolecular Chemistry and Physics, 2021, 222, 2100135.	2.2	3
363	Influence of Surface and Structural Variations in Donor–Acceptor–Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47499-47510.	8.0	3
364	Solubilization and Water Penetration into Micelles and Other Organized Assemblies as Indicated by Photochemical Studies1., 1984,, 585-598.		3
365	Introducing ACS Applied Nano Materials. ACS Applied Nano Materials, 2018, 1, 1-1.	5.0	2
366	Introducing <i>ACS Applied Electronic Materials</i> . ACS Applied Electronic Materials, 2019, 1, 1-1.	4.3	2
367	Forum on Translational DNA Nanotechnology. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13833-13834.	8.0	2
368	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
369	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
370	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
371	Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry, 2020, 59, 1618-1629.	2.5	2
372	Functional Biomaterials for Diagnosis and Therapeutics of Infectious Diseases. ACS Applied Bio Materials, 2021, 4, 3727-3728.	4.6	2
373	CHAPTER 16. Conjugated Polyelectrolytes. RSC Polymer Chemistry Series, 2013, , 343-358.	0.2	2
374	Luminescent Photoelastic Coatings. Experimental Mechanics, 2004, 44, 416-424.	2.0	2
375	Preface to the "Metal–Organic Frameworks: Fundamental Study and Applications―Joint Virtual Issue. Langmuir, 2020, 36, 14901-14903.	3.5	2
376	Triplet–Triplet Annihilation in Platinum Poly-ynes. Implications for Application to Optical Pulse Limiting. ACS Applied Polymer Materials, 2022, 4, 2256-2261.	4.4	2
377	A Remote Surface Pressure Measurement Technique for Rotating Elements. Journal of Turbomachinery, 1997, 119, 397-399.	1.7	1
378	Pressure Sensitive Paint for Acoustic Pressure Fluctuations., 2005,, 297.		1

#	Article	IF	Citations
379	Modified $\langle i \rangle p \langle i \rangle$ -phenylene vinylene platinum (II) acetylides with enhanced two-photon absorption in solid host. Proceedings of SPIE, 2013, , .	0.8	1
380	Forum on Materials and Interfaces for Next-Generation Thin-Film Transistors. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 25833-25833.	8.0	1
381	<i>ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (ii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (ii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (iii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials (iii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials (iii) To Exclusively Publish Full Articles (iii) To Exclusively Publish Full Articles (iii) To Exclusively Publish Full Articles (iii) To Exclusive Publish Full Articl</i>	8.0	1
382	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
383	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
384	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
385	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
386	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
387	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
388	Preface: Forum on Advances in Biocidal Materials and Interfaces. ACS Applied Materials & Emp; Interfaces, 2020, 12, 21147-21148.	8.0	1
389	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
390	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
391	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
392	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
393	Young Investigator Forum of <i>ACS Applied Bio Materials</i> . ACS Applied Bio Materials, 2020, 3, 1-1.	4.6	1
394	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
395	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
396	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1

#	Article	IF	CITATIONS
397	Conjugated Polyelectrolytes Designed for Biological Applications. , 2019, , 547-585.		1
398	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
399	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
400	Metal-to-Ligand Charge Transfer Excited States in π-Conjugated Systems. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	0
401	One-Pot Synthesis of 2,5-Diethynyl-3,4-dibutylthiophene Substituted Multitopic Bipyridine Ligands: Redox and Photophysical Properties of Their Ruthenium(II) Complexes ChemInform, 2003, 34, no.	0.0	0
402	LangmuirSpecial Issue in Memory of David F. O'Brien Â. Langmuir, 2003, 19, 6339-6341.	3.5	0
403	Near Infrared Fluorescent and Phosphorescent Organic Light-Emitting Devices. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
404	Forum: Focus on India. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19355-19355.	8.0	0
405	Forum on Graphdiyne Materials: Preparation, Structure, and Function. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2561-2562.	8.0	0
406	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
407	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
408	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
409	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
410	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
411	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
412	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
413	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
414	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. , 2020, 2, 563-564.		0

#	Article	IF	CITATIONS
415	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	O
416	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
417	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
418	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
419	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
420	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
421	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
422	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
423	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
424	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
425	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
426	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
427	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
428	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
429	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
430	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	5.1	0
431	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
432	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0

#	Article	IF	CITATIONS
433	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical & Description of Engineering Data, 2020, 65, 2253-2254.	1.9	О
434	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
435	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	О
436	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
437	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	О
438	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
439	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	O
440	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
441	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
442	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
443	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
444	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
445	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	O
446	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
447	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
448	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
449	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
450	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0

#	Article	IF	CITATIONS
451	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	O
452	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	O
453	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
454	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
455	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
456	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
457	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
458	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
459	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
460	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
461	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	O
462	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
463	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	O
464	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
465	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	O
466	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
467	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
468	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0

#	Article	IF	CITATIONS
469	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	O
470	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
471	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
472	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
473	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
474	Young Investigator Forum in ACS Applied Electronic Materials. ACS Applied Electronic Materials, 2020, 2, 1-1.	4.3	0
475	Young Investigator Forum. ACS Applied Materials & Interfaces, 2020, 12, 5167-5168.	8.0	0
476	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
477	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
478	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
479	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
480	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5 . 4	0
481	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
482	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Emp; Technology, 2020, 54, 5307-5308.	10.0	0
483	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
484	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
485	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
486	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0

#	Article	IF	CITATIONS
487	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	O
488	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
489	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
490	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
491	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & amp; Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
492	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
493	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
494	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
495	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
496	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
497	Year 2020: Science and Engineering Research Continues. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14799-14801.	8.0	0
498	It Is Good to Be Flexible: Energy Transport Facilitated by Conformational Fluctuations in Light-Harvesting Polymers. Journal of Physical Chemistry B, 2021, 125, 5885-5896.	2.6	0
499	Remembering Françoise Winnik. Langmuir, 2021, 37, 7627-7629.	3.5	0
500	Photocatalysis and Light-Induced Electron Transfer Reactions of Tertiary Amines., 1986,, 147-159.		0
501	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
502	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
503	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
504	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0

#	Article	IF	CITATIONS
505	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	O
506	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
507	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
508	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
509	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
510	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
511	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
512	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
513	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	3.5	0
514	ACS Applied Materials & Samp; Interfaces Family Early Career Forum–2022. ACS Applied Bio Materials, 2022, 5, 1829-1830.	4.6	0
515	<i>ACS Applied Materials & Description of the control of the contr</i>	8.0	0
516	N-heterocyclic carbene platinum-butadiyne Click/iClick complexes. Towards blue-violet phosphorescence. Journal of Organometallic Chemistry, 2022, 976, 122440.	1.8	0