Chun-Hui Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8780502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light. Separation and Purification Technology, 2021, 262, 118328.	7.9	28
2	Cu-Zn bimetal ZIFs derived nanowhisker zero-valent copper decorated ZnO nanocomposites induced oxygen activation for high-efficiency iodide elimination. Journal of Hazardous Materials, 2021, 416, 126097.	12.4	25
3	GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom. Radiation Protection Dosimetry, 2016, 168, 433-440.	0.8	19
4	Silver-decorated ZIF-8 derived ZnO concave nanocubes for efficient photooxidation-adsorption of iodide anions: An in-depth experimental and theoretical investigation. Journal of Solid State Chemistry, 2021, 297, 122039.	2.9	18
5	Minimum detectable activity for Nal(Tl) airborne γ-ray spectrometry based on Monte Carlo simulation. Science China Technological Sciences, 2014, 57, 1840-1845.	4.0	14
6	Armor-like passivated CsPbBr ₃ quantum dots: boosted stability with hand-in-hand ligands and enhanced performance of nuclear batteries. Journal of Materials Chemistry A, 2021, 9, 8772-8781.	10.3	13
7	Optimization of the Compton camera for measuring prompt gamma rays in boron neutron capture therapy. Applied Radiation and Isotopes, 2017, 124, 62-67.	1.5	12
8	Strategies for radioiodine capture by metal organic frameworks and their derived materials. Microporous and Mesoporous Materials, 2022, 341, 112041.	4.4	12
9	A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding. Journal of Radiological Protection, 2015, 35, 777-788.	1.1	11
10	Determination of the relationship between dose deposition and Cerenkov photons in homogeneous and heterogeneous phantoms during radiotherapy using Monte Carlo method. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 187-193.	1.5	9
11	Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer. Health Physics, 2017, 112, 258-265.	0.5	9
12	Ultrahigh capture of radioiodine with zinc oxide-decorated, nitrogen-doped hierarchical nanoporous carbon derived from sonicated ZIF-8-precursor. Journal of Materials Science, 2021, 56, 9106-9121.	3.7	9
13	Hierarchically mesoporous mixed copper oxide/calcined layered double hydroxides composites for iodide high-efficiency elimination. Journal of Solid State Chemistry, 2021, 303, 122509.	2.9	9
14	Dosimetric impact of respiratory motion during boron neutron capture therapy for lung cancer. Radiation Physics and Chemistry, 2020, 168, 108527.	2.8	8
15	Sonicated zeolitic imidazolate Framework-8 derived nanoporous carbon for efficient capture and reversible storage of radioiodine. Journal of Solid State Chemistry, 2021, 299, 122218.	2.9	8
16	Monte Carlo study of the beam shaping assembly optimization for providing high epithermal neutron flux for BNCT based on D–T neutron generator. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1289-1298.	1.5	7
17	Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. Journal of Cancer Research and Therapeutics, 2018, 14, 184-195.	0.9	7
18	Core-shell Bi2S3 nanorods loaded ZIF-8 nanocomposites for efficient and reversible capture of radioactive iodine. Microporous and Mesoporous Materials, 2022, 339, 111983.	4.4	7

CHUN-HUI GONG

#	Article	IF	CITATIONS
19	Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study. Applied Radiation and Isotopes, 2018, 137, 219-224.	1.5	6
20	Assessment of long-term risks of secondary cancer in paediatric patients with brain tumours after boron neutron capture therapy. Journal of Radiological Protection, 2019, 39, 838-853.	1.1	6
21	Modulation of lateral positions of Bragg peaks via magnetic fields inside cancer patients: Toward magnetic field modulated proton therapy. Medical Physics, 2017, 44, 5325-5338.	3.0	5
22	Design of a BNCT irradiation room based on proton accelerator and beryllium target. Applied Radiation and Isotopes, 2020, 165, 109314.	1.5	5
23	Analysis of influencing factors on the method for determining boron concentration and dose through dual prompt gamma detection. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	3.4	5
24	ikEffects of activation parameters on Zeolitic imidazolate framework JUC-160-derived, nitrogen-doped hierarchical nanoporous carbon and its volatile iodine capture properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129478.	4.7	5
25	Calculations ofSvalues and effective dose for the radioiodine carrier and surrounding individuals based on Chinese hybrid reference phantoms using the Monte Carlo technique. Journal of Radiological Protection, 2015, 35, 707-717.	1.1	4
26	Theoretical calculation and measurement accuracy of Cerenkov optic-fiber dosimeter under electron and photon radiation therapies. Radiation Measurements, 2018, 110, 1-6.	1.4	4
27	Investigation of in vivo beam range verification in carbon ion therapy using the Doppler Shift Effect of prompt gamma: A Monte Carlo simulation study. Radiation Physics and Chemistry, 2019, 162, 72-81.	2.8	4
28	Quantum dots enhanced Cerenkov luminescence imaging. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	4
29	Novel method exploration of monitoring neutron beam using Cherenkov photons in BNCT. Radiation Physics and Chemistry, 2019, 156, 222-230.	2.8	4
30	Evaluation of using the Doppler shift effect of prompt gamma for measuring the carbon ion range in vivo for heterogeneous phantoms. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 959, 163439.	1.6	4
31	Analysis of the relationship between neutron dose and Cerenkov photons under neutron irradiation through Monte Carlo method. Radiation Measurements, 2016, 93, 35-40.	1.4	3
32	A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment. Australasian Physical and Engineering Sciences in Medicine, 2019, 42, 481-487.	1.3	3
33	Boron concentration prediction from Compton camera image for boron neutron capture therapy based on generative adversarial network. Applied Radiation and Isotopes, 2022, 186, 110302.	1.5	3
34	Measurement of dose in radionuclide therapy by using Cerenkov radiation. Australasian Physical and Engineering Sciences in Medicine, 2017, 40, 695-705.	1.3	2
35	Research on a wide-range biodosimeter based on the irradiation damage effect of proteins for Î ³ radiation. Radiation Physics and Chemistry, 2020, 166, 108477.	2.8	2
36	Preliminary Monte Carlo simulations of a SPECT system based on CdZnTe detectors for real time BNCT dose monitoring. , 2018, , .		1

3

CHUN-HUI GONG

#	Article	IF	CITATIONS
37	Strategies for accurate response assessment of radiochromic film using flatbed scanner for beam quality assurance. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	1
38	Abstract ID: 126 Evaluation of the clinical translation of an optimized Compton camera during Boron Neutron Capture Therapy for melanoma patients. Physica Medica, 2017, 42, 27.	0.7	0
39	Monte Carlo study of dose distribution improvement by skin-shielding layer design in boron neutron capture therapy for non-small-cell lung cancer. Radioprotection, 2018, 53, 207-217.	1.0	0
40	In situ modification of JUC-160-derived carbon with Cu/ZnO nanoparticles for efficient capture and reversible storage of radioiodine. Surfaces and Interfaces, 2022, 32, 102160.	3.0	0