Mahmoud Elsabahy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8780081/publications.pdf

Version: 2024-02-01

81 papers

5,252 citations

34 h-index 71 g-index

84 all docs

84 docs citations

84 times ranked 8041 citing authors

#	Article	IF	CITATIONS
1	Methods for preparation of nanostructured lipid carriers. Methods, 2022, 199, 3-8.	3.8	21
2	Methods for preparation of niosomes: A focus on thin-film hydration method. Methods, 2022, 199, 9-15.	3.8	42
3	Methods for preparation of nanoconstructs. Methods, 2022, 199, 1-2.	3.8	O
4	Development of Sedative Dexmedetomidine Sublingual In Situ Gels: In Vitro and In Vivo Evaluations. Pharmaceutics, 2022, 14, 220.	4.5	5
5	Development of potent nanosized isatin-isonicotinohydrazide hybrid for management of Mycobacterium tuberculosis. International Journal of Pharmaceutics, 2022, 612, 121369.	5.2	13
6	Sesamol Loaded Albumin Nanoparticles: A Boosted Protective Property in Animal Models of Oxidative Stress. Pharmaceuticals, 2022, 15, 733.	3.8	6
7	Applications of nanoengineered therapeutics and vaccines: special emphasis on COVID-19., 2022, , 21-63.		O
8	Nanomaterials and immune system. , 2022, , 65-114.		0
9	Data analysis and interpretation. , 2022, , 145-168.		O
10	Methods for evaluation of the immunomodulatory effects of nanoparticles., 2022,, 115-127.		0
11	Precautions during evaluation of immunotoxicity of particulate materials. , 2022, , 139-143.		O
12	Multiple analyte profiling (MAP) index as a powerful diagnostic and therapeutic monitoring tool. Methods, 2021, 190, 26-32.	3.8	2
13	Nanoparticles integrating natural and synthetic polymers for <i>inÂvivo</i> insulin delivery. Pharmaceutical Development and Technology, 2021, 26, 30-40.	2.4	16
14	Design and Preclinical Evaluation of Chitosan/Kaolin Nanocomposites with Enhanced Hemostatic Efficiency. Marine Drugs, 2021, 19, 50.	4.6	14
15	Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. International Journal of Pharmaceutics, 2021, 597, 120317.	5. 2	7
16	Betaxololâ€loaded niosomes integrated within pHâ€sensitive in situ forming gel for management of glaucoma. International Journal of Pharmaceutics, 2021, 598, 120380.	5.2	52
17	Morphologic design of sugar-based polymer nanoparticles for delivery of antidiabetic peptides. Journal of Controlled Release, 2021, 334, 1-10.	9.9	10
18	Morphologic Design of Silver-Bearing Sugar-Based Polymer Nanoparticles for Uroepithelial Cell Binding and Antimicrobial Delivery. Nano Letters, 2021, 21, 4990-4998.	9.1	28

#	Article	IF	Citations
19	Intratracheal Administration of Chloroquine-Loaded Niosomes Minimize Systemic Drug Exposure. Pharmaceutics, 2021, 13, 1677.	4.5	11
20	High-Payload chitosan microparticles for the colonic delivery of quercetin: Development and in-vivo evaluation in a rabbit colitis model. Journal of Drug Delivery Science and Technology, 2020, 58, 101832.	3.0	16
21	Electrospun vancomycin-loaded nanofibers for management of methicillin-resistant Staphylococcus aureus-induced skin infections. International Journal of Pharmaceutics, 2020, 586, 119620.	5.2	40
22	Stability Study and Clinical Evaluation of Lipid Injectable Emulsion in Parenteral Nutrition Admixtures Used for Preterm Neonates. Nutrition in Clinical Practice, 2020, 36, 696-703.	2.4	2
23	Effects of Glutathione and Histidine on NO Release from a Dimeric Dinitrosyl Iron Complex (DNIC). Inorganic Chemistry, 2020, 59, 16998-17008.	4.0	7
24	Erythrocyte-Membrane-Camouflaged Nanocarriers with Tunable Paclitaxel Release Kinetics via Macromolecular Stereocomplexation., 2020, 2, 595-601.		9
25	Nanomedicine: a new paradigm to overcome drug incompatibilities. Journal of Pharmacy and Pharmacology, 2020, 72, 1289-1305.	2.4	11
26	Development and <i>in vivo </i> evaluation of chitosan nanoparticles for the oral delivery of albumin. Pharmaceutical Development and Technology, 2019, 24, 329-337.	2.4	17
27	Multiplexing techniques for measurement of the immunomodulatory effects of particulate materials: Precautions when testing micro- and nano-particles. Methods, 2019, 158, 81-85.	3.8	6
28	Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan. Nature Communications, 2019, 10, 2307.	12.8	141
29	Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. Journal of Pharmacy and Pharmacology, 2019, 71, 1209-1221.	2.4	49
30	Toward the Optimization of Dinitrosyl Iron Complexes as Therapeutics for Smooth Muscle Cells. Molecular Pharmaceutics, 2019, 16, 3178-3187.	4.6	21
31	Functional, Degradable Zwitterionic Polyphosphoesters as Biocompatible Coating Materials for Metal Nanostructures. Langmuir, 2019, 35, 1503-1512.	3.5	13
32	DEVELOPMENT AND CHARACTERIZATION OF NANOSTRUCTURED LIPID CARRIERS FOR TRANSDERMAL DELIVERY OF MELOXICAM. Bulletin of Pharmaceutical Sciences, 2019, 42, 51-62.	0.1	1
33	A Vinyl Ether-Functional Polycarbonate as a Template for Multiple Postpolymerization Modifications. Macromolecules, 2018, 51, 3233-3242.	4.8	13
34	Levofloxacin-Loaded Nanoparticles Decrease Emergence of Fluoroquinolone Resistance in Escherichia coli. Microbial Drug Resistance, 2018, 24, 1098-1107.	2.0	24
35	Reassessment of nanomaterials immunotoxicity. Nano Today, 2018, 20, 10-12.	11.9	11
36	Development of Fully Degradable Phosphonium-Functionalized Amphiphilic Diblock Copolymers for Nucleic Acids Delivery. Biomacromolecules, 2018, 19, 1212-1222.	5.4	23

#	Article	IF	CITATIONS
37	Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA. Pharmaceutical Development and Technology, 2018, 23, 387-399.	2.4	8
38	Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Colloids and Surfaces B: Biointerfaces, 2018, 162, 236-245.	5.0	86
39	Resistance of primary breast cancer cells with enhanced pluripotency and stem cell activity to sex hormonal stimulation and suppression. International Journal of Biochemistry and Cell Biology, 2018, 105, 84-93.	2.8	8
40	Acid-Triggered Polymer Backbone Degradation and Disassembly to Achieve Release of Camptothecin from Functional Polyphosphoramidate Nanoparticles. ACS Macro Letters, 2018, 7, 783-788.	4.8	20
41	Design and development of multifunctional polyphosphoester-based nanoparticles for ultrahigh paclitaxel dual loading. Nanoscale, 2017, 9, 15773-15777.	5.6	25
42	Development and in vivo evaluation of chitosan beads for the colonic delivery of azathioprine for treatment of inflammatory bowel disease. European Journal of Pharmaceutical Sciences, 2017, 109, 269-279.	4.0	26
43	Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model. Carbohydrate Polymers, 2017, 174, 1041-1050.	10.2	49
44	Niosomes: A Strategy toward Prevention of Clinically Significant Drug Incompatibilities. Scientific Reports, 2017, 7, 6340.	3.3	63
45	Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities. International Journal of Cancer, 2017, 140, 1475-1484.	5.1	54
46	In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. International Journal of Nanomedicine, 2017, Volume 12, 759-777.	6.7	126
47	Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA. Drug Design, Development and Therapy, 2017, Volume11, 483-496.	4.3	30
48	Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 842-871.	6.1	84
49	Data Mining as a Guide for the Construction of Cross-Linked Nanoparticles with Low Immunotoxicity via Control of Polymer Chemistry and Supramolecular Assembly. Accounts of Chemical Research, 2015, 48, 1620-1630.	15.6	60
50	Functionalizable Hydrophilic Polycarbonate, Poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one), Designed as a Degradable Alternative for PHPMA and PEG. Macromolecules, 2015, 48, 8797-8805.	4.8	29
51	Improving Paclitaxel Delivery: <i>In Vitro</i> and <i>In Vivo</i> Characterization of PEGylated Polyphosphoester-Based Nanocarriers. Journal of the American Chemical Society, 2015, 137, 2056-2066.	13.7	176
52	Polymeric Nanostructures for Imaging and Therapy. Chemical Reviews, 2015, 115, 10967-11011.	47.7	420
53	Poly(ethylene oxide)â€ <i>block</i> â€Polyphosphoesterâ€ <i>graft</i> â€Paclitaxel Conjugates with Acidâ€Labile Linkages as a pHâ€Sensitive and Functional Nanoscopic Platform for Paclitaxel Delivery. Advanced Healthcare Materials, 2014, 3, 441-448.	7.6	129
54	Development of a Vinyl Ether-Functionalized Polyphosphoester as a Template for Multiple Postpolymerization Conjugation Chemistries and Study of Core Degradable Polymeric Nanoparticles. Macromolecules, 2014, 47, 4634-4644.	4.8	64

#	Article	IF	Citations
55	Core-Shell Nanoparticles for Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 475-517.	0.1	0
56	Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chemical Science, 2013, 4, 2122.	7.4	116
57	Degradable Cationic Shell Cross-Linked Knedel-like Nanoparticles: Synthesis, Degradation, Nucleic Acid Binding, and <i>in Vitro</i> Evaluation. Biomacromolecules, 2013, 14, 1018-1027.	5.4	35
58	Multifunctional Hierarchically Assembled Nanostructures as Complex Stage-Wise Dual-Delivery Systems for Coincidental Yet Differential Trafficking of siRNA and Paclitaxel. Nano Letters, 2013, 13, 2172-2181.	9.1	43
59	Differential immunotoxicities of poly(ethylene glycol)- vs. poly(carboxybetaine)-coated nanoparticles. Journal of Controlled Release, 2013, 172, 641-652.	9.9	34
60	Shell crosslinked knedel-like nanoparticles for delivery of cisplatin: effects of crosslinking. Nanoscale, 2013, 5, 3220.	5.6	42
61	Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs. Journal of Materials Chemistry B, 2013, 1, 5241.	5.8	26
62	<i>In Vitro</i> Efficacy of Paclitaxel-Loaded Dual-Responsive Shell Cross-Linked Polymer Nanoparticles Having Orthogonally Degradable Disulfide Cross-Linked Corona and Polyester Core Domains. Molecular Pharmaceutics, 2013, 10, 1092-1099.	4.6	53
63	Cytokines as biomarkers of nanoparticle immunotoxicity. Chemical Society Reviews, 2013, 42, 5552.	38.1	326
64	Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles. Scientific Reports, 2013, 3, 3313.	3.3	63
65	Needle-free Gene Delivery Through the Skin: An Overview of Recent Strategies. Current Pharmaceutical Design, 2013, 19, 7301-7315.	1.9	17
66	Rapid and Versatile Construction of Diverse and Functional Nanostructures Derived from a Polyphosphoester-Based Biomimetic Block Copolymer System. Journal of the American Chemical Society, 2012, 134, 18467-18474.	13.7	165
67	Hierarchically Assembled Theranostic Nanostructures for siRNA Delivery and Imaging Applications. Journal of the American Chemical Society, 2012, 134, 17362-17365.	13.7	44
68	Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities. Biomaterials, 2012, 33, 8557-8568.	11.4	72
69	Strategies toward wellâ€defined polymer nanoparticles inspired by nature: Chemistry versus versatility. Journal of Polymer Science Part A, 2012, 50, 1869-1880.	2.3	83
70	Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 2012, 41, 2545.	38.1	1,441
71	Editorial [Hot Topic: Nanotechnology Enables Superior Medical Therapies (Guest Editors: Marianna) Tj ETQq1 1 C).784314 i 1.6	gBT /Overloc
72	siRNA nanocarriers based on methacrylic acid copolymers. Journal of Controlled Release, 2011, 152, 159-167.	9.9	58

#	Article	IF	CITATION
73	Self assembling properties of aminated poly(glycerol methacrylate)s. Journal of Controlled Release, 2011, 152, e142-e143.	9.9	3
74	Non-Viral Nucleic Acid Delivery: Key Challenges and Future Directions. Current Drug Delivery, 2011, 8, 235-244.	1.6	180
75	Aminated Linear and Star-Shape Poly(glycerol methacrylate)s: Synthesis and Self-Assembling Properties. Biomacromolecules, 2010, 11, 889-895.	5.4	62
76	Advancing nonviral gene delivery: lipid- and surfactant-based nanoparticle design strategies. Nanomedicine, 2010, 5, 1103-1127.	3.3	82
77	Delivery of Nucleic Acids through the Controlled Disassembly of Multifunctional Nanocomplexes. Advanced Functional Materials, 2009, 19, 3862-3867.	14.9	61
78	Characterization of Polyion Complex Micelles Designed to Address the Challenges of Oligonucleotide Delivery. Pharmaceutical Research, 2008, 25, 2083-2093.	3.5	30
79	Synthesis and enzymatic stability of PEGylated oligonucleotide duplexes and their self-assemblies with polyamidoamine dendrimers. Soft Matter, 2008, 4, 294-302.	2.7	33
80	Solubilization of Docetaxel in Poly(ethylene oxide)-block-poly(butylene/styrene oxide) Micelles. Biomacromolecules, 2007, 8, 2250-2257.	5.4	74
81	Development and Evaluation of Letrozole-Loaded Hyaluronic Acid/Chitosan-Coated Poly(d,l-lactide-co-glycolide) Nanoparticles. Journal of Pharmaceutical Innovation, 0, , 1.	2.4	9