List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8779833/publications.pdf Version: 2024-02-01

FLENA SEDRANO

#	Article	IF	CITATIONS
1	Highly emissive hybrid mesoporous organometallo-silica nanoparticles for bioimaging. Materials Advances, 2022, 3, 3582-3592.	5.4	4
2	Surfactantâ€Templated Zeolites: From Thermodynamics to Direct Observation. Advanced Materials Interfaces, 2021, 8, 2001388.	3.7	17
3	Hybrid Amino Acidâ€īiO ₂ Materials with Tuneable Crystalline Structure and Morphology for Photocatalytic Applications. Advanced Sustainable Systems, 2021, 5, 2100076.	5.3	12
4	Versatile Homoleptic Naphthylâ€Acetylide Heteronuclear [Pt 2 M 4 (CCâ€Np) 8] (M = Ag, Cu) Phosphors for Highly Efficient White and NIR Hybrid Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901126.	7.3	6
5	Meeting High Stability and Efficiency in Hybrid Lightâ€Emitting Diodes Based on SiO ₂ /ZrO ₂ Coated CsPbBr ₃ Perovskite Nanocrystals. Advanced Functional Materials, 2020, 30, 2005401.	14.9	63
6	The use of N^N ligands as an alternative strategy for the sol–gel synthesis of visible-light activated titanias. Journal of Materials Chemistry C, 2020, 8, 12495-12508.	5.5	6
7	Consecutive Surfactant-Templating Opens up New Possibilities for Hierarchical Zeolites. Crystal Growth and Design, 2020, 20, 515-520.	3.0	5
8	Biodegradable Poly(Îμ-Caprolactone) Active Films Loaded with MSU-X Mesoporous Silica for the Release of α-Tocopherol. Polymers, 2020, 12, 137.	4.5	14
9	Key Ionic Electrolytes for Highly Self‣table Lightâ€Emitting Electrochemical Cells Based on Ir(III) Complexes. Advanced Optical Materials, 2020, 8, 2000295.	7.3	18
10	Thermochemistry of Surfactantâ€īemplating of USY Zeolite. Chemistry - A European Journal, 2019, 25, 10045-10048.	3.3	4
11	Conducting Polymer–TiO ₂ Hybrid Materials: Application in the Removal of Nitrates from Water. Langmuir, 2019, 35, 6089-6105.	3.5	11
12	White-emitting organometallo-silica nanoparticles for sun-like light-emitting diodes. Materials Horizons, 2019, 6, 130-136.	12.2	32
13	Luminescent Cycloplatinated Complexes with Biologically Relevant Phosphine Ligands: Optical and Cytotoxic Properties. Inorganic Chemistry, 2019, 58, 1657-1673.	4.0	30
14	Luminescent cyclometalated-pentafluorophenyl Pt II , Pt IV and heteropolynuclear complexes. Coordination Chemistry Reviews, 2018, 366, 69-90.	18.8	55
15	Visibleâ€Lightâ€Activated Black Organotitanias: How Synthetic Conditions Influence Their Structure and Photocatalytic Activity. ChemPlusChem, 2018, 83, 390-400.	2.8	3
16	Hybrid Dyeâ€Titania Nanoparticles for Superior Lowâ€Temperature Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1702583.	19.5	29
17	The Energetics of Surfactantâ€Templating of Zeolites. Angewandte Chemie - International Edition, 2018, 57, 8724-8728.	13.8	25
18	Improving hydrogen production from the hydrolysis of ammonia borane by using multifunctional catalysts. International Journal of Hydrogen Energy, 2018, 43, 17100-17111.	7.1	28

ELENA SERRANO

#	Article	IF	CITATIONS
19	The Energetics of Surfactantâ€Templating of Zeolites. Angewandte Chemie, 2018, 130, 8860-8864.	2.0	6
20	Organometallic phosphors as building blocks in sol–gel chemistry: luminescent organometallo-silica materials. Journal of Materials Chemistry C, 2017, 5, 9721-9732.	5.5	17
21	Regioselective C–H Bond Activation of Asymmetric Bis(ylide)s Promoted by Pd. European Journal of Inorganic Chemistry, 2017, 2017, 2220-2230.	2.0	8
22	Bottom-up construction of highly photoactive dye-sensitized titania using Ru(II) and Ir(III) complexes as building blocks. Applied Catalysis B: Environmental, 2017, 200, 93-105.	20.2	13
23	In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite. Chemistry of Materials, 2016, 28, 8971-8979.	6.7	35
24	Stereoselective Synthesis of 1,3â€Diaminotruxillic Acid Derivatives: An Advantageous Combination of CHâ€ <i>ortho</i> â€Palladation and Onâ€Flow [2+2]â€Photocycloaddition in Microreactors. Chemistry - A European Journal, 2016, 22, 144-152.	3.3	26
25	Magnetically separable mesoporous Fe3O4/silica catalysts with very low Fe3O4 content. Journal of Solid State Chemistry, 2016, 237, 138-143.	2.9	13
26	Titania–Silica Materials for Enhanced Photocatalysis. Chemistry - A European Journal, 2015, 21, 18338-18344.	3.3	4
27	Hierarchical Zeolites and their Catalytic Performance in Selective Oxidative Processes. ChemSusChem, 2015, 8, 1328-1333.	6.8	21
28	The role of mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. Journal of Molecular Catalysis A, 2015, 406, 40-45.	4.8	20
29	Pd-catalysed ortho-alkoxylation of benzamides N-protected with an iminophosphorane functionality. New Journal of Chemistry, 2015, 39, 3077-3083.	2.8	15
30	Mesoporous Metal Complex–Silica Aerogels for Environmentally Friendly Amination of Allylic Alcohols. ChemCatChem, 2015, 7, 87-93.	3.7	16
31	Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43, 7681-7717.	38.1	422
32	Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catalysis Communications, 2014, 44, 35-39.	3.3	69
33	Insights into the Active Species of Nanoparticleâ€Functionalized Hierarchical Zeolites in Alkylation Reactions. ChemCatChem, 2014, 6, 3530-3539.	3.7	15
34	Organotitanias: a versatile approach for band gap reduction in titania based materials. Journal of Materials Chemistry C, 2014, 2, 9497-9504.	5.5	21
35	Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41: Effect of the support morphology. Applied Catalysis A: General, 2013, 453, 383-390.	4.3	51
36	Synthesis, Structure, and Reactivity of Pd Complexes with Mixed P,S-Bis(ylide), Ylide-Sulfide, and Ylide-Methanide Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 2129-2138.	2.0	5

#	Article	IF	CITATIONS
37	Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals. Green Chemistry, 2013, 15, 2786.	9.0	70
38	ConfChem Conference on A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education—The Global Experiment of the IYC2011: Creating Online Communities for Education and Science. Journal of Chemical Education, 2013, 90, 1544-1546.	2.3	1
39	Sol–Gel Coordination Chemistry: Building Catalysts from the Bottomâ€Up. ChemCatChem, 2013, 5, 844-860.	3.7	41
40	Metal-complex ionosilicas: Cationic mesoporus silica with Ni(II) and Cu(II) complexes in their framework. Materials Letters, 2013, 95, 93-96.	2.6	6
41	Comparison of Lattice-Fluid Binary Parameters For Mixtures and Block Copolymers. Journal of Macromolecular Science - Physics, 2013, 52, 65-83.	1.0	2
42	Helical Al- and Ce-MCM-41 materials as novel catalyst for acid and redox processes. Applied Catalysis A: General, 2012, 435-436, 1-9.	4.3	16
43	A stable luminescent hybrid mesoporous copper complex–silica. Chemical Communications, 2012, 48, 8883.	4.1	15
44	Facile Metalation of Hbzq by [<i>cis</i> -Pt(C ₆ F ₅) ₂ (thf) ₂]: A Route to a Pentafluorophenyl Benzoquinolate Solvate Complex That Easily Coordinates Terminal Alkynes. Spectroscopic and Optical Properties. Inorganic Chemistry, 2012, 51, 11665-11679.	4.0	60
45	Regioselective CH Bond Activation on Stabilized Nitrogen Ylides Promoted by Pd(II) Complexes: Scope and Limitations. Organometallics, 2012, 31, 394-404.	2.3	13
46	Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 2012, 151, 380-389.	4.4	18
47	Mesoporous organosilicas with Pd(II) complexes in their framework. Microporous and Mesoporous Materials, 2012, 158, 300-308.	4.4	22
48	Synthesis of mesoporous metal complex-silica materials and their use as solvent-free catalysts. New Journal of Chemistry, 2011, 35, 225-234.	2.8	42
49	Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chemistry, 2011, 13, 2750.	9.0	89
50	Regioselective Orthopalladation of (<i>Z</i>)-2-Aryl-4-Arylidene-5(4 <i>H</i>)-Oxazolones: Scope, Kinetico-Mechanistic, and Density Functional Theory Studies of the C–H Bond Activation. Inorganic Chemistry, 2011, 50, 8132-8143.	4.0	41
51	Well-ordered mesoporous interconnected silica spheres prepared using extremely low surfactant concentrations. Materials Chemistry and Physics, 2011, 129, 261-269.	4.0	10
52	Incorporation of chemical functionalities in the framework of mesoporous silica. Chemical Communications, 2011, 47, 9024.	4.1	119
53	Ortho-Palladation of (Z)-2-Aryl-4-Arylidene-5(4H)-Oxazolones. Structure and Functionalization. Organometallics, 2010, 29, 1428-1435.	2.3	16
54	Introducing catalytic activity in helical nanostructures: microwave assisted oxathioacetalisation catalysed by Al-containing helical mesoporous silicas. Chemical Communications, 2010, 46, 5163.	4.1	17

#	Article	IF	CITATIONS
55	Hierarchical control of porous silica by pH adjustment: Alkyl polyamines as surfactants for bimodal silica synthesis and its carbon replica. Journal of Solid State Chemistry, 2009, 182, 2141-2148.	2.9	13
56	Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews, 2009, 13, 2373-2384.	16.4	477
57	Molecular dynamics of an epoxy resin modified with an epoxidized poly(styrene–butadiene) linear block copolymer during cure and microphase separation processes. European Polymer Journal, 2009, 45, 1046-1057.	5.4	27
58	Experimental and Computational Study of the Bonding Properties of Mixed Bisâ^'Ylides of Phosphorus and Sulfur. Inorganic Chemistry, 2009, 48, 6823-6834.	4.0	16
59	Functionalization of Methyl (R)-Phenylglycinate Through Orthopalladation: Câ^'Hal, Câ^'O, Câ^'N, and Câ^'C Bond Coupling. Inorganic Chemistry, 2009, 48, 11963-11975.	4.0	42
60	Self-Assembly of Luminescent Alkynyl-Based Platinumâ^'Cadmium Complexes Containing Auxiliary Diimine or Terpyridine Ligands Inorganic Chemistry, 2009, 48, 5250-5262.	4.0	29
61	Unexpected [2 + 2] C–C bond coupling due to photocycloaddition on orthopalladated (Z)-2-aryl-4-arylidene-5(4H)-oxazolones. Chemical Communications, 2009, , 4681.	4.1	31
62	Micro―and macrophase separation of thermosetting systems modified with epoxidized styreneâ€ <i>block</i> â€butadiene― <i>block</i> â€styrene linear triblock copolymers and their influence on final mechanical properties. Polymer International, 2008, 57, 1333-1342.	3.1	47
63	Nanostructuration of Unsaturated Polyester by Allâ€Acrylic Block Copolymers, 1 ―Use of Highâ€Molecularâ€Weight Block Copolymers. Macromolecular Materials and Engineering, 2008, 293, 820-827.	3.6	24
64	Polymer dispersed liquid crystals based on poly(styreneâ€ <i>b</i> â€ethylene oxide), poly(bisphenol a) Tj ETQq0 diagrams and morphologies generated. Journal of Applied Polymer Science, 2008, 108, 1116-1125.	0 0 rgBT / 2.6	Overlock 10 7 18
65	Structural and ordering behavior of lamellar polystyreneâ€ <i>block</i> â€polybutadieneâ€ <i>block</i> â€polystyrene triblock copolymer containing layered silicates. Journal of Applied Polymer Science, 2008, 110, 3624-3637.	2.6	8
66	Synthesis and structure of orthopalladated complexes derived from prochiral iminophosphoranes and phosphorus ylides. Journal of Organometallic Chemistry, 2008, 693, 417-424.	1.8	32
67	Thermoresponsive meso/nanostructured thermosetting materials based on PS-b-PEO block copolymer-dispersed liquid crystal: Curing behavior and morphological variation. Acta Materialia, 2008, 56, 5112-5122.	7.9	17
68	Different bonding modes of sulfur bis-ylides in Pd complexes: Crystal structure of [Pd(μ-OAc){μ-[CH(SMe2)]2C(O)}(acac-O,O′)2]ClO4. Journal of Molecular Structure, 2008, 890, 57-62.	3.6	10
69	Structure and Properties of a Semifluorinated Diblock Copolymer Modified Epoxy Blend. Macromolecules, 2007, 40, 4068-4074.	4.8	88
70	Divergent Behavior in the Cyclopalladation of Phosphorus Ylides and Iminophosphoranes. Organometallics, 2007, 26, 3541-3551.	2.3	47
71	Curing Behavior and Final Properties of Nanostructured Thermosetting Systems Modified with Epoxidized Styreneâ€Butadiene Linear Diblock Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 2281-2292.	2.2	92
72	Multifunctional Thermally Reversible Nanostructured Thermosetting Materials Based on Block Copolymers Dispersed Liquid Crystal. Macromolecular Rapid Communications, 2007, 28, 937-941.	3.9	22

#	Article	IF	CITATIONS
73	Self-assembled block copolymers as matrix for multifunctional materials modified with low-molecular-weight liquid crystals. Acta Materialia, 2007, 55, 6436-6443.	7.9	21
74	PALS study of epoxy matrices: self-assembly of block copolymers and its capability for nanostructuring thermosetting systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3690-3699.	0.8	4
75	Mechanical properties–morphology relationships in nano-/microstructured epoxy matrices modified with PEO–PPO–PEO block copolymers. Polymer International, 2007, 56, 1392-1403.	3.1	59
76	Mixed Pâ^'N and Asâ^'N Bis-Ylide Palladium Complexes:Â Cooperative Intramolecular Interactions, Conformational Preferences, and Câ^'H Bond Activationsâ€. Organometallics, 2006, 25, 4653-4664.	2.3	31
77	Nanostructured Thermosetting Systems by Modification with Epoxidized Styreneâ^'Butadiene Star Block Copolymers. Effect of Epoxidation Degree. Macromolecules, 2006, 39, 2254-2261.	4.8	136
78	Molecular dynamics of poly(glycolide) and poly(glycolide-co-L-lactide) during isothermal cold crystallization. Journal of Non-Crystalline Solids, 2006, 352, 5087-5092.	3.1	4
79	Thermally reversible materials based on thermosetting systems modified with polymer dispersed liquid crystals for optoelectronic application. Polymers for Advanced Technologies, 2006, 17, 835-840.	3.2	23
80	Towards microphase separation in epoxy systems containing PEO/PPO/PEO block copolymers by controlling cure conditions and molar ratios between blocks. Part 2. Structural characterization. Colloid and Polymer Science, 2006, 284, 1419-1430.	2.1	41
81	Viscoelastic behavior of thermosetting epoxy mixtures modified with syndiotactic polystyrene during network formation. Journal of Applied Polymer Science, 2006, 100, 2348-2355.	2.6	25
82	Influence of PS-b-PEO diblock copolymers on the compatibility of syndiotactic polystyrene modified epoxy blends. Journal of Applied Polymer Science, 2006, 102, 479-488.	2.6	6
83	Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer. Polymer, 2005, 46, 7082-7093.	3.8	104
84	Nanostructured Thermosetting Systems from Epoxidized Styrene Butadiene Block Copolymers. Macromolecular Rapid Communications, 2005, 26, 982-985.	3.9	87
85	Synthesis and Characterization of Epoxidized Styrene-Butadiene Block Copolymers as Templates for Nanostructured Thermosets. Macromolecular Chemistry and Physics, 2004, 205, 987-996.	2.2	62
86	Effect of different thermal treatments on the self-assembled nanostructures of a styrene–butadiene–styrene star block copolymer. Polymer Degradation and Stability, 2004, 83, 495-507.	5.8	24
87	Synthesis and Characterization of PdIIComplexes with Bis-Pyridinium and Isoquinolinium N-Ylides:Â Moderate CH···OC Intramolecular Hydrogen Bonds as Source of Conformational Preferences. Inorganic Chemistry, 2004, 43, 7622-7635	4.0	15