Juliana Botelho Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8779819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 2016, 7, 73-77.	4.1	214
2	Phycocyanin from Microalgae: Properties, Extraction and Purification, with Some Recent Applications. Industrial Biotechnology, 2018, 14, 30-37.	0.5	73
3	Microalgae starch: A promising raw material for the bioethanol production. International Journal of Biological Macromolecules, 2020, 165, 2739-2749.	3.6	68
4	Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. International Journal of Biological Macromolecules, 2018, 118, 1855-1862.	3.6	61
5	Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innovative Food Science and Emerging Technologies, 2016, 37, 216-220.	2.7	59
6	Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocolloids, 2019, 93, 131-136.	5.6	53
7	Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. Polysaccharides, 2021, 2, 759-772.	2.1	45
8	Recent Advances and Future Perspectives of PHB Production by Cyanobacteria. Industrial Biotechnology, 2018, 14, 249-256.	0.5	37
9	Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides, 2022, 3, 441-457.	2.1	37
10	Microalgae biosynthesis of silver nanoparticles for application in the control of agricultural pathogens. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 709-716.	0.7	32
11	Development of time-pH indicator nanofibers from natural pigments: An emerging processing technology to monitor the quality of foods. LWT - Food Science and Technology, 2021, 142, 111020.	2.5	26
12	Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply. International Journal of Biological Macromolecules, 2019, 123, 1241-1247.	3.6	25
13	UTILIZATION OF CO2 IN SEMI-CONTINUOUS CULTIVATION OF Spirulina sp. AND Chlorella fusca AND EVALUATION OF BIOMASS COMPOSITION. Brazilian Journal of Chemical Engineering, 2016, 33, 691-698.	0.7	24
14	Microalgae protein heating in acid/basic solution for nanofibers production by free surface electrospinning. Journal of Food Engineering, 2018, 230, 49-54.	2.7	19
15	Potential of Chlorella fusca LEB 111 cultivated with thermoelectric fly ashes, carbon dioxide and reduced supply of nitrogen to produce macromolecules. Bioresource Technology, 2019, 277, 55-61.	4.8	18
16	Evaluation of Adding S <i>pirulina</i> to Freeze-Dried Yogurts Before Fermentation and After Freeze-Drying. Industrial Biotechnology, 2019, 15, 89-94.	0.5	17
17	Preparation of beta-carotene nanoemulsion and evaluation of stability at a long storage period. Food Science and Technology, 2019, 39, 599-604.	0.8	16
18	Role of microalgae in circular bioeconomy: from waste treatment to biofuel production. Clean Technologies and Environmental Policy, 0, , 1.	2.1	12

Juliana Botelho Moreira

#	Article	IF	CITATIONS
19	Development of pH indicators from nanofibers containing microalgal pigment for monitoring of food quality. Food Bioscience, 2021, 44, 101387.	2.0	12
20	Recent Advances of Microalgae Exopolysaccharides for Application as Bioflocculants. Polysaccharides, 2022, 3, 264-276.	2.1	11
21	Electrospun Polymeric Nanofibers in Food Packaging. , 2018, , 387-417.		10
22	Microalgae Cultivation and Industrial Waste: New Biotechnologies for Obtaining Silver Nanoparticles. Mini-Reviews in Organic Chemistry, 2019, 16, 369-376.	0.6	8
23	Microalgae-Based Biorefineries as a Promising Approach to Biofuel Production. , 2017, , 113-140.		7
24	Microalgal biotechnology applied in biomedicine. , 2020, , 429-439.		6
25	Evaluation of different modes of operation for the production of <i>Spirulina</i> sp Journal of Chemical Technology and Biotechnology, 2016, 91, 1345-1348.	1.6	5
26	Novel Food Supplements Formulated With S pirulina To Meet Athletes' Needs. Brazilian Archives of Biology and Technology, 2018, 61, .	0.5	2
27	Microalgae as a source of sustainable biofuels. , 2020, , 253-271.		2
28	Degradation Effects on the Mechanical and Thermal Properties of the Bio-Composites Due to Accelerated Weathering. Composites Science and Technology, 2022, , 159-172.	0.4	1
29	Nanofiber-Reinforced Bionanocomposites in Agriculture Applications. Composites Science and Technology, 2022, , 311-332.	0.4	1
30	Frutas da biodiversidade do Rio Grande do Sul: composição quÃmica e potencial anti-inflamatório. , 2021, , 60-75.		0
31	Nanotechnology Perspectives for Bacteriocin Applications in Active Food Packaging. Industrial Biotechnology, 2022, 18, 137-146.	0.5	0