Loredana Santo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8779754/publications.pdf

Version: 2024-02-01

687363 642732 76 725 13 23 citations h-index g-index papers 81 81 81 628 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shape Memory Composites for Self-deployable Structures in Aerospace Applications. Procedia Engineering, 2014, 88, 42-47.	1.2	96
2	Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission. Microgravity Science and Technology, 2012, 24, 287-296.	1.4	52
3	Shape memory polymer foams. Progress in Aerospace Sciences, 2016, 81, 60-65.	12.1	52
4	Solid-state Foaming of Nano–Clay-Filled Thermoset Foams with Shape Memory Properties. Polymer-Plastics Technology and Engineering, 2012, 51, 560-567.	1.9	42
5	Laser cladding of metals: a review. International Journal of Surface Science and Engineering, 2008, 2, 327.	0.4	38
6	Mission BION-M1: Results of RIBES/FOAM2 experiment on shape memory polymer foams and composites. Aerospace Science and Technology, 2015, 40, 109-114.	4.8	35
7	Recycling of thermoset polyurethane foams. Polymer Engineering and Science, 2013, 53, 1357-1363.	3.1	32
8	Replication casting of open-cell AlSi7Mg0.3 foams. Materials Letters, 2011, 65, 2558-2561.	2.6	23
9	Shape Memory Foams of Microbial Polyester for Biomedical Applications. Polymer-Plastics Technology and Engineering, 2013, 52, 599-602.	1.9	21
10	Mission STS-134: Results of Shape Memory Foam Experiment. Acta Astronautica, 2013, 91, 333-340.	3.2	19
11	Forming of Shape Memory Composite Structures. Key Engineering Materials, 0, 554-557, 1930-1937.	0.4	17
12	Shape Memory Behavior of PET Foams. Polymers, 2018, 10, 115.	4.5	17
13	Shape memory composite antennas for space applications. IOP Conference Series: Materials Science and Engineering, 2016, 161, 012066.	0.6	14
14	Dynamic Mechanical Performances of Polyesterâ€"Clay Nanocomposite Thick Films. Journal of Composite Materials, 2008, 42, 2841-2852.	2.4	13
15	Shape memory composite structures for self-deployable solar sails. Astrodynamics, 2019, 3, 247-255.	2.4	13
16	A sustainable molding process for new rubber products from tire recycling. Progress in Rubber, Plastics and Recycling Technology, 2019, 35, 41-55.	1.8	13
17	Direct Moulding of Rubber Granules and Powders from Tyre Recycling. Applied Mechanics and Materials, 0, 371, 315-319.	0.2	11
18	Auxetic epoxy foams produced by solid state foaming. Journal of Cellular Plastics, 2016, 52, 441-454.	2.4	11

#	Article	IF	CITATIONS
19	Shape memory polymer composite unit with embedded heater. Smart Materials and Structures, 2021, 30, 075009.	3.5	11
20	Formability of Open-Cell Aluminum Foams by Laser. , 2010, , .		10
21	Shape Memory Composite Sandwich Structures with Self-Healing Properties. Polymers, 2021, 13, 3056.	4.5	10
22	Drilling Polymeric Matrix Composites. , 2008, , 167-194.		9
23	Microstructural Modification of Laser-Bent Open-Cell Aluminum Foams. Key Engineering Materials, 2012, 504-506, 1213-1218.	0.4	9
24	Compression Moulding of Thermoplastic Nanocomposites Filled with MWCNT. Polymers and Polymer Composites, 2017, 25, 611-620.	1.9	9
25	Anisogrid thermoplastic composite lattice structure by innovative out-of-autoclave process. International Journal of Advanced Manufacturing Technology, 2020, 109, 1941-1952.	3.0	9
26	Selective Laser Sintering of Resin-Coated Sandsâ€"Part I: The Laser-Material Interaction. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	2.2	8
27	Numerical Simulation of Laser Bending of Aluminum Foams. Key Engineering Materials, 0, 554-557, 1864-1871.	0.4	8
28	Plastic shaping by means of IR heating and direct pellet molding. Polymer Engineering and Science, 2006, 46, 896-903.	3.1	7
29	Recent Developments in the Field of Shape Memory Epoxy Foams. Materials Science Forum, 0, 783-786, 2523-2530.	0.3	7
30	Shape Memory Polymer Composite Actuator: Modeling Approach for Preliminary Design and Validation. Actuators, 2019, 8, 51.	2.3	7
31	Infrared assisted polymer forming. International Journal of Material Forming, 2008, 1, 1355-1358.	2.0	6
32	Shape Memory Epoxy Foams: New Materials for Aerospace Applications. Materials Science Forum, 0, 706-709, 165-172.	0.3	5
33	Mold replication in injection molding of high density polyethylene. Polymer Engineering and Science, 2020, 60, 2459-2469.	3.1	5
34	Biomechanical properties and histomorphometric features of aortic tissue in patients with or without bicuspid aortic valve. Journal of Thoracic Disease, 2020, 12, 2304-2316.	1.4	5
35	Frozen Stresses in Shape Memory Polymer Composites. Materiale Plastice, 2018, 55, 494-497.	0.8	5
36	Testing the Dispersion of Nanoparticles in a Nanocomposite with an Ultra-Low Fill Content Using a Novel Non-Destructive Evaluation Technique. Materials, 2022, 15, 1208.	2.9	5

#	Article	IF	CITATIONS
37	Aesthetic Diode Laser Welding of Stainless Steel. Key Engineering Materials, 2007, 344, 707-713.	0.4	4
38	Numerical Prediction of Residual Stresses in Laser Bending of Stainless Steel Sheet Metals. Key Engineering Materials, 2009, 410-411, 629-640.	0.4	4
39	Manufacturing of a Shape Memory Polymer Actuator. , 2015, , .		4
40	Molding articles made of 100% recycled fiberglass. Journal of Composite Materials, 2016, 50, 2959-2969.	2.4	4
41	Space sustainability, advanced materials and micro/nanotechnologies for future life in outer Space. Emergent Materials, 2022, 5, 237-240.	5.7	4
42	Mechanical Characterization of Metal Sheets by Means of Double Indentation. Key Engineering Materials, 2007, 344, 127-134.	0.4	3
43	Double Indentation of Laser Welded Butt Joints of Stainless Steel Sheets. Key Engineering Materials, 2009, 410-411, 503-509.	0.4	3
44	Numerical Simulation of Laser Forming of Aluminum Sponges: Effect of Temperature and Heat Treatments. Key Engineering Materials, 2014, 611-612, 731-738.	0.4	3
45	Shape Memory Composite Hands for Space Applications. , 2015, , .		3
46	Multilayered Composite Plates with Shape Memory Properties (sup > (sup > . Key Engineering Materials, 2016, 699, 1-7.	0.4	3
47	Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach. AIP Conference Proceedings, 2016, , .	0.4	3
48	Shape Memory Materials from Epoxy Matrix Composites. Springer Series on Polymer and Composite Materials, 2017, , 303-320.	0.7	3
49	Solidâ€state foaming of epoxy resin under hypergravity and simulated microgravity. Advances in Polymer Technology, 2018, 37, 2616-2624.	1.7	3
50	Durability of Shape Memory Polymer Composite Laminates under Thermo-Mechanical Cycling. Journal of Composites Science, 2022, 6, 91.	3.0	3
51	Microscopic testing of carbon fiber laminates with shape memory epoxy interlayer. Materials Today Communications, 2022, 32, 103854.	1.9	3
52	Diode Laser Cure of Serigraphic Ink. Polymer-Plastics Technology and Engineering, 2007, 46, 1049-1053.	1.9	2
53	Numerical Simulation of Open-Cell Aluminum Foams under Compression. Key Engineering Materials, 2012, 504-506, 1219-1224.	0.4	2
54	Indentation Recovery of Shape Memory Foams Produced by Solid State Foaming. Key Engineering Materials, 2014, 611-612, 656-663.	0.4	2

#	Article	IF	Citations
55	Shape recovery of PET foams after cold compression. AIP Conference Proceedings, 2016, , .	0.4	2
56	Local density measurement of additive manufactured copper parts by instrumented indentation. AIP Conference Proceedings, 2018 , , .	0.4	2
57	Laser Assisted Polymer Forming. , 2004, , .		2
58	Custom Painting by Means of Powder Coating and Localized Heating. Polymer-Plastics Technology and Engineering, 2010, 49, 164-168.	1.9	1
59	The Role of Mixing Time in the Production of Nanocomposite Thermosetting Coatings. Polymer-Plastics Technology and Engineering, 2013, 52, 1200-1212.	1.9	1
60	Self-Repairing Behavior of Shape Memory Composites. Applied Mechanics and Materials, 0, 809-810, 543-547.	0.2	1
61	CNT and Graphene Filled Shape Memory Foams by Solid State Foaming. Key Engineering Materials, 2015, 651-653, 719-725.	0.4	1
62	Shape Recovery of Polymeric Matrix Composites by Irradiation. Materials Science Forum, 2016, 879, 1645-1650.	0.3	1
63	Thermosetting polyester foams by infiltration in soluble preforms. Journal of Cellular Plastics, 2018, 54, 707-718.	2.4	1
64	Diode Laser Cure of Thermosetting Powders for Writing on Painted and Unpainted Metallic Surfaces. , 2009, , .		1
65	Organic Shape-Memory Polymers and their Foams and Composites in Space. , 2022, , 287-310.		1
66	An IR molding system for direct shaping of thermoplastics. Polymer Engineering and Science, 2010, 50, 2079-2084.	3.1	0
67	Hot Drilling of Aluminium Matrix Composite. Materials Science Forum, 0, 678, 95-104.	0.3	0
68	Diode laser welding of aluminum to steel. , 2011, , .		0
69	Rubber-Toughened Long Glass Fiber Reinforced Thermoplastic Composite. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2012, 2, 47-58.	0.4	O
70	Mold Production by Selective Laser Sintering of Resin Coated Sands. International Journal of Surface Engineering and Interdisciplinary Materials Science, 2013, 1 , 1 - 13 .	0.4	0
71	Epoxy-Matrix MMT-Filled Nanocomposite Coatings onto Aluminum Substrates. International Journal of Surface Engineering and Interdisciplinary Materials Science, 2014, 2, 1-14.	0.4	0
72	Direct Molding of Polymers for Biomedical Applications. Key Engineering Materials, 2014, 611-612, 685-692.	0.4	0

#	Article	IF	CITATIONS
73	Direct molding of pavement tiles made of ground tire rubber. AIP Conference Proceedings, 2016, , .	0.4	O
74	Conceptual Design of an Experiment for the International Space Station About Shape Memory Composite in Space Environment. , 2017 , , .		0
75	Hybrid nanocomposites with ultra-low filling content by nano-coating fragmentation. Polymer-Plastics Technology and Materials, 0, , 1-15.	1.3	O
76	Molding industrial products from tire ground rubber. , 2021, , 251-272.		0