Bobo Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8779157/publications.pdf

Version: 2024-02-01

840776 940533 16 302 11 16 citations h-index g-index papers 16 16 16 221 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines. Journal of Occupational and Environmental Hygiene, 2015, 12, D168-D177.	1.0	38
2	Coating material of air sealing in coal mine: Clay composite slurry (CCS). Applied Clay Science, 2013, 80-81, 299-304.	5.2	34
3	A novel coating technology for fast sealing of air leakage in underground coal mines. International Journal of Mining Science and Technology, 2021, 31, 313-320.	10.3	29
4	Underground coal fire emission of spontaneous combustion, Sandaoba coalfield in Xinjiang, China: Investigation and analysis. Science of the Total Environment, 2021, 777, 146080.	8.0	27
5	Effects of inorganic fillers on the flameâ€retardant and mechanical properties of rigid polyurethane foams. Journal of Applied Polymer Science, 2014, 131, .	2.6	26
6	Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy, 2020, 207, 118303.	8.8	25
7	Impact of Heat and Mass Transfer during the Transport of Nitrogen in Coal Porous Media on Coal Mine Fires. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	24
8	Normalizing Fire Prevention Technology and a Ground Fixed Station for Underground Mine Fires Using Liquid Nitrogen: A Case Study. Fire Technology, 2018, 54, 1887-1893.	3.0	21
9	Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit. Scientific Reports, 2017, 7, 5302.	3.3	18
10	Fire extinguishment behaviors of liquid fuel using liquid nitrogen jet. Process Safety Progress, 2016, 35, 407-413.	1.0	15
11	Numerical investigation of local thermal non-equilibrium effects in coal porous media with cryogenic nitrogen injection. International Journal of Thermal Sciences, 2018, 133, 32-40.	4.9	14
12	Application of a liquid nitrogen direct jet system to the extinguishment of oil pool fires in open space. Process Safety Progress, 2017, 36, 165-177.	1.0	10
13	Pozzolanicity verification of combustion metamorphic rocks from coalfield fire zones in China. Journal of Loss Prevention in the Process Industries, 2021, 69, 104390.	3.3	9
14	Thermal damage and mechanical properties of high temperature sandstone with cyclic heating–cooling treatment. Bulletin of Engineering Geology and the Environment, 2022, 81, .	3. 5	5
15	Rheological properties of combustion metamorphic rock slurry for coalfield fire prevention. Bulletin of Engineering Geology and the Environment, 2021, 80, 8231-8245.	3 . 5	4
16	Lessons learned from fires of the wood caused by the spontaneous combustion of coal dust in underground mines. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1335-1344.	3.6	3