Marcelo Nollmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8779107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA imaging in bacteria. FEMS Microbiology Reviews, 2021, 45, .	8.6	1
2	Biology across scales: from atomic processes to bacterial communities through the lens of the microscope. FEMS Microbiology Reviews, 2021, 45, .	8.6	1
3	Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nature Protocols, 2021, 16, 1600-1628.	12.0	28
4	Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nature Genetics, 2021, 53, 477-486.	21.4	111
5	The Impact of Space and Time on the Functional Output of the Genome. Cold Spring Harbor Perspectives in Biology, 2021, , a040378.	5.5	10
6	Perspectives on Chromosome Organization. Journal of Molecular Biology, 2020, 432, 635-637.	4.2	0
7	TADs or no TADS: Lessons From Single-cell Imaging of Chromosome Architecture. Journal of Molecular Biology, 2020, 432, 682-693.	4.2	9
8	ATP-Driven Separation of Liquid Phase Condensates in Bacteria. Molecular Cell, 2020, 79, 293-303.e4.	9.7	107
9	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
10	Direct and simultaneous observation of transcription and chromosome architecture in single cells with Hi-M. Nature Protocols, 2020, 15, 840-876.	12.0	23
11	G1/S transcription factors assemble in increasing numbers of discrete clusters through G1 phase. Journal of Cell Biology, 2020, 219, .	5.2	8
12	Osmotic Stress Activates Two Reactive Oxygen Species Pathways with Distinct Effects on Protein Nanodomains and Diffusion. Plant Physiology, 2019, 179, 1581-1593.	4.8	62
13	Nanoscale organization of tetraspanins during HIV-1 budding by correlative dSTORM/AFM. Nanoscale, 2019, 11, 6036-6044.	5.6	35
14	Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science, 2019, 364, 57-62.	12.6	182
15	Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms. Molecular Cell, 2019, 74, 212-222.e5.	9.7	183
16	TADs are 3D structural units of higher-order chromosome organization in <i>Drosophila</i> . Science Advances, 2018, 4, eaar8082.	10.3	237
17	Sequence-dependent catalytic regulation of the SpoIIIE motor activity ensures directionality of DNA translocation. Scientific Reports, 2018, 8, 5254.	3.3	3
18	Super Resolution Imaging of Start Transcription Factors in Yeast. Biophysical Journal, 2018, 114, 547a.	0.5	1

MARCELO NOLLMANN

#	Article	IF	CITATIONS
19	Challenges and guidelines toward 4D nucleome data and model standards. Nature Genetics, 2018, 50, 1352-1358.	21.4	47
20	DNA Organization and Superesolved Segregation. Methods in Molecular Biology, 2018, 1805, 271-289.	0.9	1
21	Imaging of Bacterial Chromosome Organization by 3D Super-Resolution Microscopy. Methods in Molecular Biology, 2017, 1624, 253-268.	0.9	7
22	Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings. Scientific Reports, 2017, 7, 5284.	3.3	19
23	Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9273-9278.	7.1	36
24	Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nature Communications, 2017, 8, 1753.	12.8	137
25	New insights into the function of a versatile class of membrane molecular motors from studies of Myxococcus xanthus surface (gliding) motility. Microbial Cell, 2017, 4, 98-100.	3.2	10
26	Astigmatic multifocus microscopy enables deep 3D super-resolved imaging. Biomedical Optics Express, 2016, 7, 2163.	2.9	22
27	Nanometer resolved single-molecule colocalization of nuclear factors by two-color super resolution microscopy imaging. Methods, 2016, 105, 44-55.	3.8	32
28	The mechanism of force transmission at bacterial focal adhesion complexes. Nature, 2016, 539, 530-535.	27.8	120
29	Bacterial partition complexes segregate within the volume of the nucleoid. Nature Communications, 2016, 7, 12107.	12.8	105
30	Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. Biomedical Optics Express, 2016, 7, 855.	2.9	47
31	Direct observation of the translocation mechanism of transcription termination factor Rho. Nucleic Acids Research, 2015, 43, 2367-2377.	14.5	27
32	Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus. Cell Systems, 2015, 1, 163-173.	6.2	118
33	The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent. European Biophysics Journal, 2015, 44, 337-348.	2.2	50
34	A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends in Genetics, 2015, 31, 454-464.	6.7	20
35	Roles of chromatin insulators in the formation of long-range contacts. Nucleus, 2015, 6, 118-122.	2.2	6
36	Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. Molecular Cell, 2015, 59, 588-602.	9.7	245

MARCELO NOLLMANN

#	Article	IF	CITATIONS
37	Constructing a Magnetic Tweezers to Monitor RNA Translocation at the Single-Molecule Level. Methods in Molecular Biology, 2015, 1259, 257-273.	0.9	4
38	Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome. PLoS Genetics, 2014, 10, e1004544.	3.5	101
39	Structure and DNA-binding properties of the <i>Bacillus subtilis</i> SpoIIIE DNA translocase revealed by single-molecule and electron microscopies. Nucleic Acids Research, 2014, 42, 2624-2636.	14.5	22
40	Chromatin Immunoprecipitation Indirect Peaks Highlight Long-Range Interactions of Insulator Proteins and Pol II Pausing. Molecular Cell, 2014, 53, 672-681.	9.7	102
41	Chromosome Organization: Original Condensins. Current Biology, 2014, 24, R111-R113.	3.9	4
42	Recruitment, Assembly, and Molecular Architecture of the SpoIIIE DNA Pump Revealed by Superresolution Microscopy. PLoS Biology, 2013, 11, e1001557.	5.6	71
43	SpoIIIE mechanism of directional translocation involves target search coupled to sequenceâ€dependent motor stimulation. EMBO Reports, 2013, 14, 473-479.	4.5	25
44	Super-Resolution Imaging of Bacteria in a Microfluidics Device. PLoS ONE, 2013, 8, e76268.	2.5	35
45	Single-molecule super-resolution imaging in bacteria. Current Opinion in Microbiology, 2012, 15, 758-763.	5.1	26
46	Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nature Structural and Molecular Biology, 2008, 15, 485-493.	8.2	91
47	Dynamics of Neutrophil Migration in Lymph Nodes during Infection. Immunity, 2008, 29, 487-496.	14.3	366
48	SpoIIIE strips proteins off the DNA during chromosome translocation. Genes and Development, 2008, 22, 1786-1795.	5.9	63
49	Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism. Biochimie, 2007, 89, 490-499.	2.6	103
50	Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nature Structural and Molecular Biology, 2007, 14, 264-271.	8.2	101
51	Giant proteins that move DNA: bullies of the genomic playground. Nature Reviews Molecular Cell Biology, 2006, 7, 580-588.	37.0	44
52	Identification of the FtsK sequence-recognition domain. Nature Structural and Molecular Biology, 2006, 13, 1023-1025.	8.2	52
53	Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature, 2006, 439, 100-104.	27.8	172
54	DNA overwinds when stretched. Nature, 2006, 442, 836-839.	27.8	358

MARCELO NOLLMANN

#	Article	IF	CITATIONS
55	SOMO (SOlution MOdeler). Structure, 2005, 13, 723-734.	3.3	101
56	A global multi-technique approach to study low-resolution solution structures. Journal of Applied Crystallography, 2005, 38, 874-887.	4.5	10
57	Behavior of Tn3 Resolvase in Solution and Its Interaction with res. Biophysical Journal, 2005, 89, 1920-1931.	0.5	12
58	The Solution Structure and Oligomerization Behavior of Two Bacterial Toxins: Pneumolysin and Perfringolysin O. Biophysical Journal, 2004, 87, 540-552.	0.5	48
59	Solution Structure of the Tn3 Resolvase-Crossover Site Synaptic Complex. Molecular Cell, 2004, 16, 127-137.	9.7	44
60	Low-Resolution Reconstruction of a Synthetic DNA Holliday Junction. Biophysical Journal, 2004, 86, 3060-3069.	0.5	18
61	The Role of Cholesterol in the Activity of Pneumolysin, a Bacterial Protein Toxin. Biophysical Journal, 2004, 86, 3141-3151.	0.5	51
62	Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophysical Chemistry, 2001, 93, 215-230.	2.8	308
63	Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms. SSRN Electronic Journal, 0, , .	0.4	2
64	Qudi-HiM: an open-source acquisition software package for highly multiplexed sequential and combinatorial optical imaging. Open Research Europe, 0, 2, 46.	2.0	2