Junfang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8778867/publications.pdf

Version: 2024-02-01

147801 197818 7,697 49 31 49 h-index citations g-index papers 51 51 51 16747 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Progressive inflammationâ€mediated neurodegeneration after traumatic brain or spinal cord injury. British Journal of Pharmacology, 2016, 173, 681-691.	5 . 4	217
3	Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways. Journal of Neuroscience, 2014, 34, 10989-11006.	3.6	201
4	Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. Journal of Neuroscience, 2020, 40, 2960-2974.	3.6	193
5	Function and Mechanisms of Autophagy in Brain and Spinal Cord Trauma. Antioxidants and Redox Signaling, 2015, 23, 565-577.	5.4	164
6	Downregulation of miR-23a and miR-27a following Experimental Traumatic Brain Injury Induces Neuronal Cell Death through Activation of Proapoptotic Bcl-2 Proteins. Journal of Neuroscience, 2014, 34, 10055-10071.	3.6	129
7	Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiology of Disease, 2013, 54, 252-263.	4.4	127
8	Environmental Enrichment Enhances Neurogranin Expression and Hippocampal Learning and Memory But Fails to Rescue the Impairments of Neurogranin Null Mutant Mice. Journal of Neuroscience, 2006, 26, 6230-6237.	3.6	111
9	Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death and Disease, 2018, 9, 476.	6.3	103
10	Glial Scar Expression of CHL1, the Close Homolog of the Adhesion Molecule L1, Limits Recovery after Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 7222-7233.	3.6	95
11	Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 1919-1935.	3.4	94
12	Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Cell Cycle, 2014, 13, 2446-2458.	2.6	90
13	Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics, 2020, 10, 11376-11403.	10.0	88
14	Autophagy in Neurotrauma: Good, Bad, or Dysregulated. Cells, 2019, 8, 693.	4.1	83
15	Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 3956-3971.	3.6	72
16	TrkB.T1 Contributes to Neuropathic Pain after Spinal Cord Injury through Regulation of Cell Cycle Pathways. Journal of Neuroscience, 2013, 33, 12447-12463.	3 . 6	70
17	Propofol Limits Microglial Activation after Experimental Brain Trauma through Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Anesthesiology, 2013, 119, 1370-1388.	2.5	66
18	Cell Cycle Activation and Spinal Cord Injury. Neurotherapeutics, 2011, 8, 221-228.	4.4	63

#	Article	IF	Citations
19	Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain, Behavior, and Immunity, 2021, 92, 165-183.	4.1	62
20	Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. Journal of Neuroinflammation, 2012, 9, 169.	7.2	53
21	Extracellular Vesicles as an Emerging Frontier in Spinal Cord Injury Pathobiology and Therapy. Trends in Neurosciences, 2021, 44, 492-506.	8.6	53
22	Cell cycle inhibition limits development and maintenance of neuropathic pain following spinal cord injury. Pain, 2016, 157, 488-503.	4.2	51
23	Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain, Behavior, and Immunity, 2019, 80, 73-87.	4.1	48
24	Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. Cells, 2020, 9, 1194.	4.1	47
25	Inhibition of E2F1/CDK1 Pathway Attenuates Neuronal Apoptosis In Vitro and Confers Neuroprotection after Spinal Cord Injury In Vivo. PLoS ONE, 2012, 7, e42129.	2.5	46
26	Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1347-1360.	3.4	43
27	Proton extrusion during oxidative burst in microglia exacerbates pathological acidosis following traumatic brain injury. Glia, 2021, 69, 746-764.	4.9	42
28	Interaction of NG2 ⁺ glial progenitors and microglia/macrophages from the injured spinal cord. Glia, 2010, 58, 410-422.	4.9	41
29	Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle, 2012, 11, 1782-1795.	2.6	41
30	Sustained neuronal and microglial alterations are associated with diverse neurobehavioral dysfunction long after experimental brain injury. Neurobiology of Disease, 2020, 136, 104713.	4.4	41
31	Dementia, Depression, and Associated Brain Inflammatory Mechanisms after Spinal Cord Injury. Cells, 2020, 9, 1420.	4.1	38
32	Cell Cycle Activation Contributes to Increased Neuronal Activity in the Posterior Thalamic Nucleus and Associated Chronic Hyperesthesia after Rat Spinal Cord Contusion. Neurotherapeutics, 2013, 10, 520-538.	4.4	37
33	The voltage-gated proton channel Hv1 plays a detrimental role in contusion spinal cord injury via extracellular acidosis-mediated neuroinflammation. Brain, Behavior, and Immunity, 2021, 91, 267-283.	4.1	36
34	cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Cell Death and Disease, 2019, 10, 531.	6.3	35
35	SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. Journal of Neuroscience Research, 2013, 91, 196-210.	2.9	34
36	Cell cycle inhibition reduces inflammatory responses, neuronal loss, and cognitive deficits induced by hypobaria exposure following traumatic brain injury. Journal of Neuroinflammation, 2016, 13, 299.	7.2	34

#	Article	IF	CITATIONS
37	Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Cell Cycle, 2015, 14, 3698-3712.	2.6	32
38	Simulated Aeromedical Evacuation Exacerbates Experimental Brain Injury. Journal of Neurotrauma, 2016, 33, 1292-1302.	3.4	29
39	Phosphatidylinositol 3â€kinase/protein kinase Cδactivation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes. Glia, 2010, 58, 315-328.	4.9	26
40	Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice. Cell Death and Disease, 2019, 10, 839.	6.3	24
41	Acyl-2-aminobenzimidazoles: A novel class of neuroprotective agents targeting mGluR5. Bioorganic and Medicinal Chemistry, 2015, 23, 2211-2220.	3.0	21
42	The voltage-gated proton channel Hv1 contributes to neuronal injury and motor deficits in a mouse model of spinal cord injury. Molecular Brain, 2020, 13, 143.	2.6	18
43	Brain innate immune response via miRNA-TLR7 sensing in polymicrobial sepsis. Brain, Behavior, and Immunity, 2022, 100, 10-24.	4.1	18
44	Sexual dimorphism in neurological function after SCI is associated with disrupted neuroinflammation in both injured spinal cord and brain. Brain, Behavior, and Immunity, 2022, 101, 1-22.	4.1	17
45	Functional and transcriptional profiling of microglial activation during the chronic phase of TBI identifies an age-related driver of poor outcome in old mice. GeroScience, 2022, 44, 1407-1440.	4.6	16
46	Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2021, 15, 662971 .	3.7	15
47	Modification of autophagy-lysosomal pathway as a neuroprotective treatment for spinal cord injury. Neural Regeneration Research, 2015, 10, 892.	3.0	11
48	Increased expression of the close homolog of the adhesion molecule I1 in different cell types over time after rat spinal cord contusion. Journal of Neuroscience Research, 2011, 89, 628-638.	2.9	10
49	Cyclopropyl-containing positive allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2275-2279.	2.2	9