Liliana LazÄ,r

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8778219/publications.pdf

Version: 2024-02-01

		1163117	839539
26	322	8	18
papers	citations	h-index	g-index
26	26	26	392
all docs	docs citations	times ranked	citing authors

#	ARTICLE ART	IF	CITATIONS
1	over V <mml:math xmlns:ḿml="http://ẃww.w3.org/1998/Math/MathML"><mml:msúb><mml:mrow></mml:mrow> <mml:mn>2</mml:mn> </mml:msúb></mml:math> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>5</mml:mn> </mml:msub>–WO<mml:math< td=""><td>0.5</td><td>O</td></mml:math<></mml:math 	0.5	O
2	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow></mml:mrow> <mml:mn>3 </mml:mn> Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts, 2021, 11, 427.</mml:msub>	3.5	19
3	INFLUENCE OF ETHYLENEDIAMINE CONTENT OVER PERFORMANCE OF CO2 ABSORPTION INTO POTASSIUM CARBONATE SOLUTIONS. Environmental Engineering and Management Journal, 2021, 20, 507-516.	0.6	2
4	Using Stochastic Approaches for Teaching Mass Transfer Unit Operations: The Monte Carlo Method. Journal of Chemical Education, 2020, 97, 3904-3909.	2.3	1
5	A Modelling Approach of the Catalytic Oxidation of Volatile Organic Compounds in the SCR-DeNOx Monolithic Reactor. Revista De Chimie (discontinued), 2020, 71, 79-87.	0.4	2
6	Chemical Vapour Deposition (CVD) Technique for Abatement of Volatile Organic Compounds (VOCs). Revista De Chimie (discontinued), 2020, 71, 97-113.	0.4	3
7	Determination of Scopolamine by Gas Chromatography from Different Parts of the Datura innoxia Biomass. Revista De Chimie (discontinued), 2020, 71, 126-136.	0.4	3
8	Computational design applied to equilibrium-staged and rate-based absorption processes. Revista De Chimie (discontinued), 2020, 71, 88-96.	0.4	1
9	INFLUENCE OF PARTICLE SIZE AND SIZE DISTRIBUTION ON KINETIC MECHANISM OF SPRUCE BARK POLYPHENOLS EXTRACTION. Cellulose Chemistry and Technology, 2019, 53, 71-78.	1.2	16
10	EFFECTIVENESS FACTOR APPROACH FOR CHEMICAL ABSORPTION PROCESS. Environmental Engineering and Management Journal, 2018, 17, 813-820.	0.6	1
11	Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark. Ultrasonics Sonochemistry, 2016, 32, 191-197.	8.2	101
12	EQUILIBRIUM PERFORMANCES OF CRYSTAL-RIGHTTM CR100 ZEOLITE USED IN WATER SOFTENING PROCESS. Environmental Engineering and Management Journal, 2015, 14, 541-549.	0.6	2
13	FTIR ANALYSIS OF ION EXCHANGE RESINS WITH APPLICATION IN PERMANENT HARD WATER SOFTENING. Environmental Engineering and Management Journal, 2014, 13, 2145-2152.	0.6	22
14	STUDY ON THE QUALITY OF WATER SUPPLY SOURCES FOR IASI CITY, ROMANIA. Environmental Engineering and Management Journal, 2014, 13, 2301-2310.	0.6	1
15	Catalytic behavior of MnMCM-48 and WMnMCM-48 ordered mesoporous catalysts in a reductive environment: a study of the conversion of methylcyclopentane. Catalysis Science and Technology, 2013, 3, 444-453.	4.1	28
16	Oxidation Catalysts for Elemental Mercury in Flue Gasesâ€"A Review. Catalysts, 2012, 2, 139-170.	3 . 5	77
17	EQUILIBRIUM AND KINETICS STUDY OF NITRATE REMOVAL FROM WATER BY PUROLITE A520-E RESIN. Environmental Engineering and Management Journal, 2012, 11, 37-45.	0.6	9
18	MnMCM-48, CoMCM-48 AND CoMnMCM-48 MESOPOROUS CATALYSTS FOR THE CONVERSION OF METHYLCYCLOPENTANE (MCP). Environmental Engineering and Management Journal, 2012, 11, 1931-1943.	0.6	11

#	Article	IF	CITATIONS
19	INFLUENCE OF SOME PARAMETERS ON NITRATE REMOVAL FROM WATER BY PUROLITE A-520E RESIN. Environmental Engineering and Management Journal, 2011, 10, 1553-1559.	0.6	9
20	RESEARCHES ON POSSIBILITY TO RECOVER AND REUSE THE IRON(II) SULPHATE FROM ETCHING OF ROLLED STEELS. Environmental Engineering and Management Journal, 2009, 8, 541-547.	0.6	1
21	VALORIZATION OF PLASTER MOLDS WASTE FROM FINE CERAMIC INDUSTRY. Environmental Engineering and Management Journal, 2009, 9, 141-146.	0.6	O
22	CATALYTIC DESTRUCTION OF AROMATIC VOCs ON SCR-DeNOx COMMERCIAL CATALYST. Environmental Engineering and Management Journal, 2007, 6, 13-20.	0.6	6
23	ENVIRONMENTAL POLLUTION WITH VOCs AND POSSIBILITIES FOR EMISSION TREATMENT. Environmental Engineering and Management Journal, 2007, 6, 529-535.	0.6	4
24	STUDY OF THE NON-CATALYTIC AND CATALYTIC OXIDATIVE DESTRUCTION OF VOCs. Environmental Engineering and Management Journal, 2007, 6, 441-449.	0.6	1
25	DEGRADATION OF ALCIAN BLUE 8 GX BY HETEROGENEOUS AND HOMOGENEOUS PHOTOCATALYTIC PROCESSES. Environmental Engineering and Management Journal, 2007, 6, 85-93.	0.6	2
26	CONVERSION OF CHLORINATED AROMATIC DERIVATIVES ON METALLIC OXIDES CATALYSTS. Environmental Engineering and Management Journal, 2005, 4, 25-40.	0.6	0