Kuihua Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8778026/publications.pdf

Version: 2024-02-01

279701 265120 1,863 42 62 23 citations h-index g-index papers 62 62 62 2067 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale, 2018, 10, 2427-2437.	2.8	369
2	Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials, 2017, 243, 291-300.	2.2	226
3	Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 2020, 164, 42-50.	5.4	114
4	Ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors. Ultrasonics Sonochemistry, 2020, 60, 104756.	3.8	63
5	The pyrolysis of biomass briquettes: Effect of pyrolysis temperature and phosphorus additives on the quality and combustion of bio-char briquettes. Fuel, 2017, 199, 488-496.	3.4	53
6	Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology. Fuel, 2021, 284, 118986.	3.4	48
7	Influence of phosphorous based additives on ash melting characteristics during combustion of biomass briquette fuel. Renewable Energy, 2017, 113, 428-437.	4.3	45
8	Halloysite nanotube functionalized with La-Ca bimetallic oxides as novel transesterification catalyst for biodiesel production with molecular simulation. Energy Conversion and Management, 2020, 220, 113138.	4.4	45
9	Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renewable Energy, 2021, 168, 981-990.	4.3	45
10	Effect of characteristics of calcium-based sorbents on the sulfation kinetics. Fuel, 2005, 84, 1933-1939.	3.4	41
11	Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds. Chemical Engineering Journal, 2011, 168, 255-261.	6.6	40
12	Experimental investigation on biodiesel production through transesterification promoted by the La-dolomite catalyst. Fuel, 2019, 257, 116092.	3.4	40
13	Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate. Applied Energy, 2010, 87, 2237-2242.	5.1	39
14	Carbonization of biomass: Effect of additives on alkali metals residue, SO 2 and NO emission of chars during combustion. Energy, 2017, 130, 560-569.	4.5	34
15	Simultaneous SO2/NO removal performance of carbide slag pellets by bagasse templating in a bubbling fluidized bed reactor. Fuel Processing Technology, 2018, 180, 75-86.	3.7	34
16	Investigation of Maize Straw Char Briquette Ash Fusion Characteristics and the Influence of Phosphorus Additives. Energy & Energy	2.5	33
17	Influence of Ammonium Phosphates on Gaseous Potassium Release and Ash-Forming Characteristics during Combustion of Biomass. Energy & Energy & 2015, 29, 2555-2563.	2.5	32
18	The study of sulphur retention characteristics of biomass briquettes during combustion. Energy, 2019, 186, 115788.	4.5	32

#	Article	IF	CITATIONS
19	Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass. Energy, 2016, 102, 244-251.	4.5	31
20	Sulfation behavior of white mud from paper manufacture as SO2 sorbent at fluidized bed combustion temperatures. Journal of Thermal Analysis and Calorimetry, 2012, 107, 241-248.	2.0	29
21	High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor. Scientific Reports, 2019, 9, 17270.	1.6	28
22	Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere. Energy, 2020, 195, 116987.	4.5	28
23	Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies. Renewable Energy, 2022, 184, 164-175.	4.3	28
24	Co-combustion characteristics and kinetics of meager coal and spent cathode carbon block by TG-MS analysis. Arabian Journal of Chemistry, 2021, 14, 103198.	2.3	23
25	Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 19415-19425.	1.1	22
26	Pyrolysis of rice straw with ammonium dihydrogen phosphate: Properties and gaseous potassium release characteristics during combustion of the products. Bioresource Technology, 2015, 197, 193-200.	4.8	20
27	Investigation of potassium transformation characteristics and the influence of additives during biochar briquette combustion. Fuel, 2018, 222, 407-415.	3.4	20
28	Optimized synergistic preparation of nitrogen-doped porous carbon derived from gasified carbon for supercapacitors. Journal of Alloys and Compounds, 2021, 860, 158385.	2.8	20
29	Kinetic Model and Simulation of Promoted Selective Non-catalytic Reduction by Sodium Carbonate. Chinese Journal of Chemical Engineering, 2007, 15, 512-519.	1.7	19
30	Influence of BaCO3 on chlorine fixation, combustion characteristics and KCl conversion during biomass combustion. Fuel, 2017, 208, 82-90.	3.4	19
31	Combustion pattern, characteristics, and kinetics of biomass and chars from segmented heating carbonization. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 812-822.	0.8	18
32	An experimental study on the effect of operating parameters and sodium additive on the NO OUT Process. Chemical Engineering Research and Design, 2011, 89, 121-126.	2.7	17
33	Improvement in the pore structure of gulfweed–based activated carbon via two–step acid treatment for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2018, 820, 103-110.	1.9	17
34	Study on performance and charging dynamics of N/O codoped layered porous carbons derived from L-tyrosine for supercapacitors. Applied Surface Science, 2022, 578, 151888.	3.1	17
35	Experimental study on biomass advanced reburning for nitrogen oxides reduction. Chemical Engineering Research and Design, 2010, 88, 425-430.	2.7	16
36	Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 8480-8491.	1.1	16

3

#	Article	IF	Citations
37	Nanoscale/microscale porous graphene-like sheets derived from different tissues and components of cane stalk for high-performance supercapacitors. Journal of Materials Science, 2019, 54, 14085-14101.	1.7	16
38	Thermogravimetric analysis of the decomposition characteristics of two kinds of calcium based organic compounds. Powder Technology, 2011, 209, 46-52.	2.1	15
39	Experimental Study on the Effect of Urea and Additive Injection for Controlling Nitrogen Oxides Emissions. Environmental Engineering Science, 2010, 27, 47-53.	0.8	14
40	Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars. Energy, 2018, 144, 301-311.	4.5	14
41	Heteroatom-Rich Porous Carbons Derived from Nontoxic Green Organic Crystals for High-Performance Symmetric and Asymmetric Supercapacitors with Aqueous/Gel Electrolyte. ACS Sustainable Chemistry and Engineering, 2020, 8, 13634-13647.	3.2	13
42	Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions. Science Bulletin, 2011, 56, 1278-1284.	1.7	11
43	Preparation of Scallion-Derived Porous Carbon with Regular Pore Structure for High-Performance Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 160549.	1.3	9
44	Experimental and Modeling Study on de-NOx Characteristics of Selective Non-catalytic Reduction in O2/CO2 Atmosphere. Chinese Journal of Chemical Engineering, 2014, 22, 943-949.	1.7	7
45	Comparison of porous carbons derived from sodium alginate and calcium alginate and their electrochemical properties. RSC Advances, 2020, 10, 2209-2215.	1.7	7
46	Characterization of Dolomite Promoted by NaAlO ₂ and Application as Catalyst in Transesterification by Response Surface Methodology. ChemistrySelect, 2019, 4, 9849-9856.	0.7	6
47	Combustion Characteristics, Kinetics, SO2 and NO Release of Low-Grade Biomass Materials and Briquettes. Energies, 2021, 14, 2655.	1.6	5
48	Experimental study on nitric oxide reduction through calcium propionate reburning. Energy, 2011, 36, 1003-1009.	4.5	3
49	Thermogravimetric Analysis and Kinetics of Combustion of Raw and Torrefied Pine Sawdust. Journal of Chemical Engineering of Japan, 2015, 48, 320-325.	0.3	3
50	Sr-doped urchin-like NiCo hydroxide and Sr-doped flower-like NiCo hydroxide@O-doped layered porous carbon for high-performance asymmetric supercapacitors with gel electrolyte. Journal of Cleaner Production, 2022, 349, 131161.	4.6	3
51	Investigating the co-combustion characteristics of oily sludge and ginkgo leaves through thermogravimetric analysis coupled with an artificial neural network. Science China Technological Sciences, 2022, 65, 261-271.	2.0	3
52	Dissolution characteristics of calciumâ€based alkaline industrial derived wastes. Canadian Journal of Chemical Engineering, 2015, 93, 532-537.	0.9	2
53	Influence of Phosphorus-Based Additives on Potassium Transformation During Pyrolysis and Ash Characteristics of Biochar Briquettes. Bioenergy Research, 2020, 13, 907-917.	2.2	2
54	Synergistic effect of additives and blend on sulfur retention, NO release and ash fusibility during combustion of biomass briquettes. International Journal of Green Energy, 2021, 18, 187-202.	2.1	2

#	Article	IF	CITATIONS
55	Synthesis of the zirconium dioxide activated carbon–based heterogeneous acid catalyst to catalyze esterification for biodiesel production with molecular simulation. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
56	Development and validation of a Riemann solver in OpenFOAM® for non-ideal compressible fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 116-140.	1.5	2
57	Development and application of a modularized geometry optimizer for future supercritical CO ₂ turbomachinery optimization. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 95-114.	1.5	2
58	Dissolution Characteristics of Calcium-Based Alkaline Industrial Wastes. Journal of Chemical Engineering of Japan, 2013, 46, 827-832.	0.3	1
59	Temperature auto-regulating equipment based on the household heating metering system. , 2011, , .		O
60	Pollutant Formation and Control during Fuel Thermochemical Conversion. Journal of Chemistry, 2020, 2020, 1-2.	0.9	0
61	Preparation of High-Performance Enteromorpha Prolifera–Based Porous Carbons by Nitrogen Modification and Their Electrochemical Performance. Frontiers in Energy Research, 2021, 9, .	1.2	O
62	D305 MICRO-PORE STRUCTURE AND DESULPHURIZATION CHARACTERISTICS OF Ca-BASED ABSORBENTS. The Proceedings of the International Conference on Power Engineering (ICOPE), 2003, 2003.3, _3-2533-256	0.0	0