Douglas F Antczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses. Genes, 2022, 13, 229.	1.0	12
2	Prediction of histone post-translational modification patterns based on nascent transcription data. Nature Genetics, 2022, 54, 295-305.	9.4	53
3	GWAS Identifies a Region Containing the <i>SALL1</i> Gene in Variation of Pigmentation Intensity Within the Chestnut Coat Color of Horses. Journal of Heredity, 2021, 112, 443-446.	1.0	3
4	Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting. Stem Cells Translational Medicine, 2021, 10, 694-710.	1.6	27
5	Placentation in Equids. Advances in Anatomy, Embryology and Cell Biology, 2021, 234, 91-128.	1.0	Ο
6	An Independent Locus Upstream of ASIP Controls Variation in the Shade of the Bay Coat Colour in Horses. Genes, 2020, 11, 606.	1.0	17
7	Genome Diversity and the Origin of the Arabian Horse. Scientific Reports, 2020, 10, 9702.	1.6	47
8	Genetics of Immune Disease in the Horse. Veterinary Clinics of North America Equine Practice, 2020, 36, 273-288.	0.3	1
9	Immunological memory and tolerance at the maternal-fetal interface: Implications for reproductive management of mares. Theriogenology, 2020, 150, 432-436.	0.9	4
10	MHC haplotype diversity in Icelandic horses determined by polymorphic microsatellites. Genes and Immunity, 2019, 20, 660-670.	2.2	14
11	Evolution of placental invasion and cancer metastasis are causally linked. Nature Ecology and Evolution, 2019, 3, 1743-1753.	3.4	53
12	Genetic Diversity of Persian Arabian Horses and Their Relationship to Other Native Iranian Horse Breeds. Journal of Heredity, 2019, 110, 173-182.	1.0	28
13	Birth, evolution, and transmission of satellite-free mammalian centromeric domains. Genome Research, 2018, 28, 789-799.	2.4	54
14	MHC haplotype diversity in Persian Arabian horses determined using polymorphic microsatellites. Immunogenetics, 2018, 70, 305-315.	1.2	12
15	Improved reference genome for the domestic horse increases assembly contiguity and composition. Communications Biology, 2018, 1, 197.	2.0	148
16	In vitro MSC function is related to clinical reaction in vivo. Stem Cell Research and Therapy, 2018, 9, 295.	2.4	12
17	Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses. Immunogenetics, 2017, 69, 351-358.	1.2	1
18	Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes. Immunogenetics, 2017, 69, 145-156.	1.2	19

DOUGLAS F ANTCZAK

#	Article	IF	CITATIONS
19	Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 288.	2.4	167
20	AÂFrameshiftÂMutationÂinÂKITÂisÂAssociatedÂwith WhiteÂSpottingÂinÂtheÂArabianÂCamel. Genes, 2017, 8,	1020	33
21	miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence. PLoS Pathogens, 2017, 13, e1006694.	2.1	25
22	Host genetic influence on papillomavirusâ€induced tumors in the horse. International Journal of Cancer, 2016, 139, 784-792.	2.3	28
23	Ectopic Trophoblast Allografts in the Horse Resist Destruction by Secondary Immune Responses. Biology of Reproduction, 2016, 95, 135-135.	1.2	3
24	Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo. Stem Cell Research and Therapy, 2015, 6, 54.	2.4	110
25	Mesenchymal Stem Cell Therapy: Clinical Progress and Opportunities for Advancement. Current Pathobiology Reports, 2015, 3, 1-7.	1.6	8
26	The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires. Immunogenetics, 2015, 67, 675-689.	1.2	7
27	Speciation with gene flow in equids despite extensive chromosomal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18655-18660.	3.3	183
28	SMAD1/5 Signaling in the Early Equine Placenta Regulates Trophoblast Differentiation and Chorionic Gonadotropin Secretion. Endocrinology, 2014, 155, 3054-3064.	1.4	25
29	Equid herpesvirus type 4 uses a restricted set of equine major histocompatibility complex class I proteins as entry receptors. Journal of General Virology, 2014, 95, 1554-1563.	1.3	9
30	Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Research and Therapy, 2014, 5, 13.	2.4	116
31	Immediate-early protein of equid herpesvirus type 1 as a target for cytotoxic T-lymphocytes in the Thoroughbred horse. Journal of General Virology, 2014, 95, 1783-1789.	1.3	3
32	Paternally expressed genes predominate in the placenta. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10705-10710.	3.3	137
33	IL-22 Is Expressed by the Invasive Trophoblast of the Equine (Equus caballus) Chorionic Girdle. Journal of Immunology, 2012, 188, 4181-4187.	0.4	34
34	A life with horses: It's been a great ride!. Veterinary Immunology and Immunopathology, 2012, 148, 6-11.	0.5	2
35	Generation and characterization of monoclonal antibodies to equine CD16. Veterinary Immunology and Immunopathology, 2012, 146, 135-142.	0.5	27
36	Generation and characterization of monoclonal antibodies to equine NKp46. Veterinary Immunology and Immunopathology, 2012, 147, 60-68.	0.5	13

DOUGLAS F ANTCZAK

#	Article	IF	CITATIONS
37	Random X inactivation in the mule and horse placenta. Genome Research, 2012, 22, 1855-1863.	2.4	38
38	Modulation of <scp>T</scp> â€cell Reactivity During Equine Pregnancy is Antigen Independent. American Journal of Reproductive Immunology, 2012, 68, 107-115.	1.2	12
39	Molecular evidence for natural killer-like cells in equine endometrial cups. Placenta, 2012, 33, 379-386.	0.7	22
40	Subpopulations of equine blood lymphocytes expressing regulatory T cell markers. Veterinary Immunology and Immunopathology, 2011, 140, 90-101.	0.5	34
41	The Crab Hole Mosquito Blues. Emerging Infectious Diseases, 2011, 17, 923-927.	2.0	1
42	Functions of ectopically transplanted invasive horse trophoblast. Reproduction, 2011, 141, 849-856.	1.1	11
43	Analysis of MHC class I genes across horse MHC haplotypes. Immunogenetics, 2010, 62, 159-172.	1.2	45
44	Maternal Immune Responses to Trophoblast: The Contribution of the Horse to Pregnancy Immunology. American Journal of Reproductive Immunology, 2010, 64, 231-244.	1.2	53
45	Split immunological tolerance to trophoblast. International Journal of Developmental Biology, 2010, 54, 445-455.	0.3	47
46	Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome. PLoS Genetics, 2010, 6, e1000909.	1.5	105
47	Equine clinical genomics: A clinician's primer. Equine Veterinary Journal, 2010, 42, 658-670.	0.9	25
48	Glial Cells Missing Homologue 1 Is Induced in Differentiating Equine Chorionic Girdle Trophoblast Cells1. Biology of Reproduction, 2009, 80, 227-234.	1.2	28
49	Sensitization of skin mast cells with IgE antibodies to Culicoides allergens occurs frequently in clinically healthy horses. Veterinary Immunology and Immunopathology, 2009, 132, 53-61.	0.5	33
50	Characterization of monoclonal antibodies to equine interleukin-10 and detection of T regulatory 1 cells in horses. Veterinary Immunology and Immunopathology, 2008, 122, 57-64.	0.5	45
51	Occurrence of IgE in foals: Evidence for transfer of maternal IgE by the colostrum and late onset of endogenous IgE production in the horse. Veterinary Immunology and Immunopathology, 2006, 110, 269-278.	0.5	24
52	A monoclonal antibody to equine interleukin-4. Veterinary Immunology and Immunopathology, 2006, 110, 363-367.	0.5	33
53	IgE and IgG antibodies in skin allergy of the horse. Veterinary Research, 2006, 37, 813-825.	1.1	82
54	Genomic characterization of MHC class I genes of the horse. Immunogenetics, 2005, 57, 763-774.	1.2	47

#	Article	IF	CITATIONS
55	Horse cytokine/IgG fusion proteins – mammalian expression of biologically active cytokines and a system to verify antibody specificity to equine cytokines. Veterinary Immunology and Immunopathology, 2005, 105, 1-14.	0.5	44
56	The Complete Map of the Ig Heavy Chain Constant Gene Region Reveals Evidence for Seven IgG Isotypes and for IgD in the Horse. Journal of Immunology, 2004, 173, 3230-3242.	0.4	93
57	Natural killer cell receptors in the horse: evidence for the existence of multiple transcribedLY49genes. European Journal of Immunology, 2004, 34, 773-784.	1.6	57
58	The proliferation inhibitory proteins p27Kip1 and retinoblastoma are involved in the control of equine lymphocyte proliferation. Veterinary Immunology and Immunopathology, 2004, 102, 363-377.	0.5	11
59	Characterization of the β2-microglobulin gene of the horse. Immunogenetics, 2003, 54, 725-733.	1.2	6
60	Characterization of the horse (Equus caballus) IGHA gene. Immunogenetics, 2003, 55, 552-560.	1.2	16
61	The effect of strenuous exercise on mRNA concentrations of interleukin-12, interferon-gamma and interleukin-4 in equine pulmonary and peripheral blood mononuclear cells. Veterinary Immunology and Immunopathology, 2003, 91, 61-71.	0.5	32
62	Recurrent airway obstruction (RAO) in horses is characterized by IFN-γ and IL-8 production in bronchoalveolar lavage cells. Veterinary Immunology and Immunopathology, 2003, 96, 83-91.	0.5	122
63	The First-Generation Whole-Genome Radiation Hybrid Map in the Horse Identifies Conserved Segments in Human and Mouse Genomes. Genome Research, 2003, 13, 742-751.	2.4	138
64	Common variable immunodeficiency in a horse. Journal of the American Veterinary Medical Association, 2002, 221, 1296-1302.	0.2	32
65	lgG antibody responses to an inhaled antigen in horses with "heaves―(recurrent airway obstruction). Veterinary Immunology and Immunopathology, 2002, 84, 169-180.	0.5	11
66	Molecular and functional characterization of genes encoding horse MHC classÂl antigens. Immunogenetics, 2001, 53, 802-809.	1.2	16
67	Progesterone Receptors Are Differentially Expressed by the Glandular Epithelium in the Endometrium and the Endometrial Cups of the Mare1. Biology of Reproduction, 1995, 52, 191-199.	1.2	1
68	Intravascular Leukostasis and Systemic Aspergillosis in a Horse With Subleukemic Acute Myelomonocytic Leukemia. Journal of Veterinary Internal Medicine, 1994, 8, 258-263.	0.6	39
69	Unusual Selective Immunoglobulin Deficiency in an Arabian Foal. Journal of Veterinary Internal Medicine, 1992, 6, 201-205.	0.6	18
70	Developmental regulation of class I major histocompatibility complex antigen expression by equine trophoblastic cells. Differentiation, 1992, 52, 69-78.	1.0	41
71	Monoclonal Antibodies to Equine Trophoblast. , 1987, , 199-214.		5
72	Cell titration assay for measuring blastogenesis of bovine lymphocytes. Veterinary Immunology and Immunopathology, 1985, 9, 319-333.	0.5	9

DOUGLAS F ANTCZAK

#	Article	IF	CITATIONS
73	Lymphocyte alloantigens of the horse II. Antibodies to ELA antigens produced during equine pregnancy. Journal of Reproductive Immunology, 1984, 6, 283-297.	0.8	66
74	Lymphocyte alloantigens of the horse. III. ELYâ€2.1: a lymphocyte alloantigen not coded for by the MHC. Animal Blood Groups and Biochemical Genetics, 1984, 15, 103-115.	0.0	22
75	Lymphocyte alloantigens of the horse. Tissue Antigens, 1982, 20, 172-187.	1.0	63
76	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 43, 304-316.	1.4	17
77	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 43, 317-325.	1.4	3
78	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 46, 119-126.	1.4	4
79	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 46, 127-137.	1.4	3