Luisa Durães

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777640/publications.pdf

Version: 2024-02-01

90 papers

4,578 citations

30 h-index 66 g-index

91 all docs 91 docs citations

91 times ranked 4984 citing authors

#	Article	IF	CITATIONS
1	Novel Kevlar® pulp-reinforced alumina-silica aerogel composites for thermal insulation at high temperature. Journal of Sol-Gel Science and Technology, 2022, 101, 87-102.	1.1	7
2	Development of Passive Fire Protection Mortars. Applied Sciences (Switzerland), 2022, 12, 2093.	1.3	4
3	A New Schiff Base Organically Modified Silica Aerogel-Like Material for Metal Ion Adsorption with Ni Selectivity. Adsorption Science and Technology, 2022, 2022, .	1.5	4
4	Textile waste-reinforced cotton-silica aerogel composites for moisture regulation and thermal/acoustic barrier. Journal of Sol-Gel Science and Technology, 2022, 102, 574-588.	1.1	7
5	Triantennary GalNAc-Functionalized Multi-Responsive Mesoporous Silica Nanoparticles for Drug Delivery Targeted at Asialoglycoprotein Receptor. International Journal of Molecular Sciences, 2022, 23, 6243.	1.8	7
6	Silica-Based Aerogel Composites Reinforced with Reticulated Polyurethane Foams: Thermal and Mechanical Properties. Gels, 2022, 8, 392.	2.1	7
7	Thermal Conductivity of Nanoporous Materials: Where Is the Limit?. Polymers, 2022, 14, 2556.	2.0	15
8	Validation of different numerical models with benchmark experiments for modelling microencapsulated-PCM-based applications for buildings. International Journal of Thermal Sciences, 2021, 159, 106565.	2.6	38
9	Intermolecular interactions in composites of organically-modified silica aerogels and polymers: A molecular simulation study. Microporous and Mesoporous Materials, 2021, 314, 110838.	2.2	10
10	Adverse outcome pathway in immunotoxicity of perfluoroalkyls. Current Opinion in Toxicology, 2021, 25, 23-29.	2.6	13
11	Ligands as copper and nickel ionophores: Applications and implications on wastewater treatment. Advances in Colloid and Interface Science, 2021, 289, 102364.	7.0	3
12	Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments. Journal of Materials Science, 2021, 56, 13604-13619.	1.7	25
13	Progress in silica aerogel-containing materials for buildings' thermal insulation. Construction and Building Materials, 2021, 286, 122815.	3.2	92
14	Influence of 1D and 2D carbon nanostructures in silica-based aerogels. Carbon, 2021, 180, 146-162.	5.4	19
15	Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles. Environmental Science: Nano, 2021, 8, 1177-1195.	2.2	23
16	Can movable PCM-filled TES units be used to improve the performance of PV panels? Overview and experimental case-study. Energy and Buildings, 2020, 210, 109743.	3.1	19
17	Reinforcement Strategies of Silica Aerogels for Thermal Insulation Applications. Proceedings (mdpi), 2020, 57, 2.	0.2	O
18	A study on the influence of prosthetic interface material in transtibial amputees' gait. Bio-Medical Materials and Engineering, 2020, 31, 211-223.	0.4	1

#	Article	IF	CITATIONS
19	Supercritically dried superparamagnetic mesoporous silica nanoparticles for cancer theranostics. Materials Science and Engineering C, 2020, 115, 111124.	3.8	28
20	Optimization of Polyamide Pulp-Reinforced Silica Aerogel Composites for Thermal Protection Systems. Polymers, 2020, 12, 1278.	2.0	18
21	An overview on alumina-silica-based aerogels. Advances in Colloid and Interface Science, 2020, 282, 102189.	7.0	50
22	Silica Aerogels/Xerogels Modified with Nitrogen-Containing Groups for Heavy Metal Adsorption. Molecules, 2020, 25, 2788.	1.7	19
23	Amine Modification of Silica Aerogels/Xerogels for Removal of Relevant Environmental Pollutants. Molecules, 2019, 24, 3701.	1.7	24
24	Synthesis of silica nanoparticles to enhance the fire resistance of cement mortars. Fire Research, 2019, 3, .	0.1	2
25	Overview of Multiscale Molecular Modeling and Simulation of Silica Aerogels. Industrial & Description of Silica	1.8	15
26	An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules, 2019, 24, 1815.	1.7	115
27	Biocompatible and high-magnetically responsive iron oxide nanoparticles for protein loading. Journal of Physics and Chemistry of Solids, 2019, 134, 273-285.	1.9	12
28	Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs. Microporous and Mesoporous Materials, 2019, 288, 109575.	2.2	26
29	Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 2019, 246, 101-118.	3.8	568
30	Influence of Structure-Directing Additives on the Properties of Poly(methylsilsesquioxane) Aerogel-Like Materials. Gels, 2019, 5, 6.	2.1	11
31	Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels. Journal of Supercritical Fluids, 2019, 147, 81-89.	1.6	62
32	Organically-modified silica aerogels: A density functional theory study. Journal of Supercritical Fluids, 2019, 147, 138-148.	1.6	12
33	Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. Journal of Materials Chemistry A, 2019, 7, 22768-22802.	5.2	208
34	Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials. Environmental Technology (United Kingdom), 2019, 40, 529-541.	1.2	41
35	Advances in carbon nanostructure–silica aerogel composites: a review. Journal of Materials Chemistry A, 2018, 6, 1340-1369.	5.2	149
36	Synthesis, characterization and sorption studies of aromatic compounds by hydrogels of chitosan blended with \hat{l}^2 -cyclodextrin- and PVA-functionalized pectin. RSC Advances, 2018, 8, 14609-14622.	1.7	34

#	Article	IF	Citations
37	Effect of different types of surfactants on the microstructure of methyltrimethoxysilane-derived silica aerogels: A combined experimental and computational approach. Journal of Colloid and Interface Science, 2018, 512, 64-76.	5.0	44
38	A reconsideration on the definition of the term aerogel based on current drying trends. Microporous and Mesoporous Materials, 2018, 258, 211-216.	2.2	112
39	Facile preparation of ambient pressure dried aerogel-like monoliths with reduced shrinkage based on vinyl-modified silica networks. Ceramics International, 2018, 44, 17453-17458.	2.3	24
40	Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 172, 135-146.	2.0	18
41	Efficient simultaneous removal of petroleum hydrocarbon pollutants by a hydrophobic silica aerogel-like material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 550-560.	2.3	27
42	Functionalized silica xerogels for adsorption of heavy metals from groundwater and soils. Journal of Sol-Gel Science and Technology, 2017, 84, 400-408.	1.1	26
43	Towards improved adsorption of phenolic compounds by surface chemistry tailoring of silica aerogels. Journal of Sol-Gel Science and Technology, 2017, 84, 409-421.	1.1	9
44	Exploring the Versatile Surface Chemistry of Silica Aerogels for Multipurpose Application. MRS Advances, 2017, 2, 3511-3519.	0.5	17
45	Superparamagnetic core-shell nanocomplexes doped with Yb 3+: Er 3+ /Ho 3+ rare-earths for upconversion fluorescence. Materials and Design, 2017, 130, 263-274.	3.3	11
46	Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters. New Journal of Chemistry, 2017, 41, 6742-6759.	1.4	25
47	Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. Materials Science and Engineering C, 2017, 75, 1420-1426.	3.8	28
48	Adsorption of phenol on silica aerogels using a stirred tank and a fixed bed column. Ciência & Tecnologia Dos Materiais, 2017, 29, e229-e233.	0.5	6
49	Friction of prosthetic interfaces used by transtibial amputees. Biotribology, 2016, 6, 36-41.	0.9	8
50	A new trend for development of mechanically robust hybrid silica aerogels. Materials Letters, 2016, 179, 206-209.	1.3	19
51	High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core–Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide. ACS Applied Materials & Interfaces, 2016, 8, 11366-11378.	4.0	56
52	Novel flexible, hybrid aerogels with vinyl- and methyltrimethoxysilane in the underlying silica structure. Journal of Materials Science, 2016, 51, 6781-6792.	1.7	48
53	Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Construction and Building Materials, 2016, 127, 43-48.	3.2	187
54	Flexible acrylate-grafted silica aerogels for insulation purposes: comparison of reinforcement strategies. Journal of Sol-Gel Science and Technology, 2016, 80, 306-317.	1.1	16

#	Article	IF	CITATIONS
55	Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels. Advances in Colloid and Interface Science, 2016, 237, 28-42.	7.0	70
56	Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science, 2016, 236, 1-27.	7.0	270
57	Design of multifunctional magnetic hybrid silica aerogels with improved properties. Microporous and Mesoporous Materials, 2016, 232, 227-237.	2.2	16
58	Truncated tetragonal bipyramidal anatase nanocrystals formed without use of capping agents from the supercritical drying of a TiO ₂ sol. CrystEngComm, 2016, 18, 164-176.	1.3	13
59	Nanocrystalline ZnO Thin Films – Influence of Sol-gel Conditions on the Underlying Chemistry and Film Microstructure and Transparency. Materials Today: Proceedings, 2015, 2, 49-56.	0.9	6
60	Mechanical and structural characterization of tibial prosthetic interfaces before and after aging under simulated service conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43, 78-90.	1.5	4
61	Controlled phase formation of nanocrystalline iron oxides/hydroxides in solution – An insight on the phase transformation mechanisms. Materials Chemistry and Physics, 2015, 163, 88-98.	2.0	22
62	Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS). Journal of Supercritical Fluids, 2015, 106, 85-92.	1.6	39
63	Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 260-269.	2.3	60
64	Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties. Journal of Physical Chemistry C, 2015, 119, 7689-7703.	1.5	79
65	Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Journal of Materials Chemistry A, 2015, 3, 1594-1600.	5.2	85
66	The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials & Design, 2014, 59, 1-9.	5.1	318
67	An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids, 2014, 385, 55-74.	1.5	555
68	Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous and Mesoporous Materials, 2014, 197, 116-129.	2.2	115
69	Poly(ethylene glycol)-block-poly(4-vinyl pyridine) as a versatile block copolymer to prepare nanoaggregates of superparamagnetic iron oxide nanoparticles. Journal of Materials Chemistry B, 2014, 2, 1565.	2.9	22
70	Novel nanoaggregates with peripheric superparamagnetic iron oxide nanoparticles and organic cores through self-assembly of tailor-made block copolymers. RSC Advances, 2014, 4, 24428-24432.	1.7	8
71	Silica based aerogelâ€like materials obtained by quick microwave drying. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 380-385.	0.5	18
72	Effect of the Drying Conditions on the Microstructure of Silica Based Xerogels and Aerogels. Journal of Nanoscience and Nanotechnology, 2012, 12, 6828-6834.	0.9	56

#	Article	IF	CITATIONS
73	Solâ€gel synthesis and washing of amorphous gâ€FeO(OH) xerogels. Materialwissenschaft Und Werkstofftechnik, 2012, 43, 427-434.	0.5	4
74	Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. Journal of Colloid and Interface Science, 2012, 380, 134-140.	5.0	109
75	MgAl2O4 spinel synthesis by combustion and detonation reactions: A thermochemical evaluation. Journal of the European Ceramic Society, 2012, 32, 3161-3170.	2.8	24
76	Study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and/or methyltrimethoxysilane precursors for aerospace applications. Journal of Sol-Gel Science and Technology, 2012, 61, 151-160.	1.1	47
77	1D AND 2D MODELING AND SIMULATION OF RADIAL COMBUSTION PROPAGATION ON Fe2O3/Al THERMITE SYSTEMS. Computational Thermal Sciences, 2012, 4, 137-149.	0.5	4
78	Characterization of iron(III) oxide/hydroxide nanostructured materials produced by sol–gel technology based on the Fe(NO3)3·9H2O–C2H5OH–CH3CHCH2O system. Materials Chemistry and Physics, 2011, 130, 548-560.	2.0	15
79	Sol–gel synthesis of iron(III) oxyhydroxide nanostructured monoliths using Fe(NO3)3Â-9H2O/CH3CH2OH/NH4OH ternary system. Journal of Physics and Chemistry of Solids, 2011, 72, 678-684.	1.9	14
80	RADIAL COMBUSTION DYNAMICS IN Fe[sub 2]O[sub 3] \hat{a} -Al THERMITE: VARIABILITY OF THE FLAME PROPAGATION PROFILES. , 2009, , .		1
81	Simulation of Fe2O3/Al combustion: Sensitivity analysis. Chemical Engineering Science, 2007, 62, 5078-5083.	1.9	9
82	Fe2O3/aluminum thermite reaction intermediate and final products characterization. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 465, 199-210.	2.6	110
83	Modelling and simulation of Fe2O3/Aluminum thermite combustion: Experimental validation. Computer Aided Chemical Engineering, 2006, , 365-370.	0.3	15
84	Radial Combustion Propagation in Iron(III) Oxide/Aluminum Thermite Mixtures. Propellants, Explosives, Pyrotechnics, 2006, 31, 42-49.	1.0	31
85	Thermal Behavior of Fe2O3/Al Thermite Mixtures in Air and Vacuum Environments. AIP Conference Proceedings, 2006, , .	0.3	0
86	Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Materials Letters, 2005, 59, 859-863.	1.3	50
87	Iron Oxide/Aluminum Fast Thermite Reaction. AIP Conference Proceedings, 2004, , .	0.3	0
88	Reaction path of energetic materials using THOR code. , 1998, , .		0
89	New equation of state for the detonation products of explosives. AIP Conference Proceedings, $1996, , .$	0.3	3
90	Tailored Silica Based Xerogels and Aerogels for Insulation in Space Environments. Advances in Science and Technology, 0, , .	0.2	15